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Abstract

We consider the harvest of a certain proportion of a population that is modeled

by an integro-difference equation. This model is discrete in time and continuous

in the space variable. The dispersal of the population is modeled by an integral

of the population density against a kernel function. The control is the harvest,

and the goal is to maximize the profit. The optimal control is characterized by

introducing an adjoint function. Numerical results and interpretations are given

for four different kernels.
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1 Introduction

Integro-difference equations are models that are discrete in time and continuous in space

and possess many of the “spread and growth” attributes of continuous-time reaction-

diffusion partial differential equations [4]. These equations model populations with dis-

crete non-overlapping generations and separate growth and dispersal stages [8]. For

certain populations, these equations do a better job of estimating the speed of invasion

than reaction-diffusion equations [5] and can include a variety of dispersal mechanisms.

We consider the harvest of a certain proportion of the population modeled by the

following integro-difference model:

Nt+1(x) = (1− αt(x))

∫
Ω

k(x, y)f(Nt(y), y) dy, (1.1)

where t = 0, 1, . . . , T − 1. The state variable N and the control α:

N = N(α) = (N0(x), N1(x), . . . , NT (x))

α = (α0(x), α1(x), . . . , αT−1(x)) ,

represent the population and proportion of the population to be harvested. We use

T time steps and x as the spatial variable in a bounded domain Ω ⊂ Rn. The initial

distribution N0(x) is given. We assume 0 ≤ αt(x) ≤M < 1 for all t = 0, 1, . . . , T−1, and

x ∈ Ω. On each time interval, growth occurs first, then dispersal, and finally harvesting.

The growth function is represented by f(Nt(y), y). The dispersal of the population is

represented by a non-local operator, integration against the kernel k(x, y).

Our goal is to maximize the profit (revenue less cost). The objective functional is

defined as:

J(α) =
T−1∑
t=0

∫
Ω

[
Ate

−δtαt(x)

∫
Ω

k(x, y)f(Nt(y), y) dy −
Bt

2
(αt(x))

2

]
dx. (1.2)
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The coefficient At gives the price factor and e−δt is a discount factor with δ > 0. We

assume the cost of harvesting is a non-linear function, and here we choose a simple

quadratic cost. The coefficient, Bt, is a weight factor that balances the two parts of the

objective functional. Our goal is to find an α∗ such that

J(α∗) = max
α

J(α).

This paper presents an innovative application of optimal control techniques to such

an integro-difference model. Optimal control of hybrid systems is a newly developing

area and this paper is the first optimal control result in integro-difference equations.

This result combines ideas from the discrete version of Pontryagin’s Maximum Principle

[3, 2, 13] and optimal control of infinite dimensional systems [10, 11] are combined. See

also [9] for some hybrid examples. We begin by making the simplifying assumption of

linear growth

f(Nt(y), y) = rNt(y).

We realize additional features could be included in the model (like price depending on the

population size), but we treat a simple case here to emphasize the novelty in the control

techniques. We will treat more general growth functions and other features in subsequent

work. See [7, 6, 12, 5] for more background and stability results for integro-difference

population models.

In section 2, we state our assumptions and prove the existence of an optimal har-

vesting control. Section 3 gives the characterization of an optimal control in terms of an

optimality system, which is the state equation coupled with an adjoint equation. Unique-

ness of an optimal control is given in section 4 under the assumption of the weight factors,

Bt, being sufficiently large. The last section gives numerical results and interpretations

for different kernels and discount factors.
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2 Existence of an Optimal Control

We assume that ∣∣∣∣∫
R
k(x, y) dx

∣∣∣∣ ≤ 1

for all x ∈ Ω and 0 ≤ k(x, y) ≤ k1 for (x, y) ∈ Ω× Ω.

Assuming M < 1, we define the control set as:

U = {α ∈ (L∞(Ω))T |0 ≤ αt(x) ≤M, t = 0, 1, . . . , T − 1}.

Assuming N0(x) ∈ L∞(Ω), with N0(x) ≥ 0, the corresponding state N = N(α) satisfies

0 ≤ Nt(x) ≤ CT ,

where CT is a constant that depends only on the number of discrete time steps considered

in the process. Denote by ‖N0‖ the L∞ norm of N0(x), then we obtain

‖N1‖ ≤
∥∥∥∥∫

krN0

∥∥∥∥ ≤ r‖N0‖

‖N2‖ ≤
∥∥∥∥∫

krN1

∥∥∥∥ ≤ r‖N1‖ ≤ r2‖N0‖

|Nt+1(x)| ≤ |1− αt(x)|
∫

Ω

|k(x, y)||rNt(y)| dy

≤ rT‖N0‖
∫

Ω

k(x, y) dy.

Theorem 2.1. There exists an optimal control α∗ in U that maximizes the functional

J(α).

Proof: Let {αn} be a maximizing sequence for the objective functional J in (1.2) and

{Nn} be the corresponding state sequence. Thus on a subsequence

Nn
t ⇀ N∗

t weakly in L2(Ω), t = 1, . . . , T (2.1)
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αn
t (x) ⇀ α∗t weakly in L2(Ω) t = 0, . . . , T − 1 (2.2)

since both sequences are a priori L∞ bounded.

We need to show N∗ is the state corresponding to α∗, i.e., N∗ = N(α∗), and the same

α∗ is an optimal control. In this section, we use φ(x) ∈ L2(Ω) as a test function. We

multiply both sides of the equation for Nn
t by the test function and integrate both the

sides to obtain:∫
Ω

Nn
t+1(x)φ(x) dx =

∫
Ω

(1− αn
t )(x)φ(x)

∫
Ω

k(x, y)rNn
t (y) dy dx (2.3)

Note that ∫
Ω

k(x, y)rNn
t (y) dy →

∫
Ω

k(x, y)rN∗
t (y) dy

pointwise for each x in Ω. Boundedness in L∞ of k(x, y) and Nn
t (x) gives

φ(x)

∫
Ω

k(x, y)rNn
t (y) dy → φ(x)

∫
Ω

k(x, y)rN∗
t (y) dy

strongly in L2(Q). Thus we have∫
Ω

(1− αn
t )(x)φ(x)

∫
Ω

k(x, y)rNn
t (y) dy dx

→
∫

Ω

(1− α∗t )(x)φ(x)

∫
Ω

k(x, y)rN∗
t (y) dy dx

for each t = 0, 1, . . . , T − 1, since (1− αn
t ) is L∞ bounded. Conclude N∗ = N(α∗).

By the weak L2 convergence of {αn
t }, for each t = 0, 1, . . . , T − 1, we have∫

Ω

(α∗t (x))
2 dx ≤ lim inf

n→∞

∫
Ω

(αn
t (x))2 dx.

This inequality together with the convergence of the integral term discussed above gives

J(α∗) ≥ lim sup
n→∞

J(αn).

The maximum of J is attained at α∗.
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3 Characterization of an Optimal Control

To characterize an optimal control, we must differentiate the map

α→ J(α)

which requires first the differentiation of the solution map α −→ N = N(α). The

directional derivative ψ of this solution map is called the sensitivity of the state with

respect to the control.

Theorem 3.1. The mapping α ∈ U → N ∈ (L∞(Ω))T is differentiable in the following

sense:

N ε
t (x)−Nt(x)

ε
⇀ ψt(x)

weakly in L2(Ω) as ε → 0 for any α ∈ U and l ∈ L∞(Ω) such that (α + εl) ∈ U for ε

small, where N ε = N(α+ εl). Also ψ satisfies:

ψt+1(x) = (1− αt(x))

∫
Ω

k(x, y)rψt(y) dy − lt(x)

∫
Ω

k(x, y)rNt(y) dy, (3.1)

ψ0(x) = 0.

for t = 0, 1, . . . , T − 1.

Proof: Consider the control-to-solution maps:

α+ εl −→ N ε = N(α+ εl)

α −→ N = N(α).

Since

N ε
t+1(x) = (1− αt(x)− εlt(x))

∫
Ω

k(x, y)rN ε
t (y) dy,
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we have

N ε
t+1(x)−Nt+1(x)

ε
= (1− αt(x))

∫
Ω

k(x, y)

[
rN ε

t (y)− rNt(y)

ε

]
dy

− lt(x)

∫
Ω

k(x, y)rN ε
t (y) dy.

Using N ε
0 = N0 and

N ε
1(x)−N1(x)

ε
= −l0

∫
Ω

k(x, y)rN0(y) dy

we obtain, ∣∣∣∣N ε
1(x)−N1(x)

ε

∣∣∣∣ ≤ C1 for all x ∈ Ω

and then by iteration,∣∣∣∣N ε
t (x)−Nt(x)

ε

∣∣∣∣ ≤ C2 for all x ∈ Ω, t = 1, 2, . . . T.

For all t = 1, 2, . . . T , on a subsequence, we have the convergence

N ε
t (x)−Nt(x)

ε
⇀ ψt weakly in L2(Ω).

Similar to the proof of Theorem 2.1, we obtain ψ satisfies (3.1).

Theorem 3.2. Given an optimal control α∗ and corresponding state solution N∗ =

N(α∗), there exists a weak solution p ∈ (L∞(Ω))T satisfying the adjoint system:

pt−1(x) = r

∫
Ω

(1− α∗t−1(y))k(y, x)pt(y) dy + r

∫
Ω

At−1e
−δ(t−1)α∗t−1(y)k(y, x) dy (3.2)

pT (x) = 0

where t = T, . . . 2, 1. Furthermore, for t = 0, 1, 2, . . . , T − 1

α∗t = min

(
max

((
1

Bt

(Ate
−δt − pt+1(x))

∫
Ω

k(x, y)rN∗
t (y) dy

)
, 0

)
,M

)
. (3.3)
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Proof: Let α∗ be an optimal control (which exists by Theorem 2.1) and N(α) be its

corresponding state. Let (α∗+ εl) ∈ U for ε > 0, and N ε be the corresponding solution of

the state equation (1.1). Since the adjoint system is linear, there exists a weak solution

p satisfying (3.2). We compute the directional derivative of the functional J(α) with

respect to α in the direction l. Since J(α∗) is the maximum value, we have

0 ≥ lim
ε→0+

J(α∗ + εl)− J(α∗)

ε

= lim
ε→0+

T−1∑
t=0

1

ε

[∫
Ω

(
Ate

−δt(α∗ + εl)t(x)

∫
Ω

k(x, y) rN ε
t (y) dy −

Bt

2
((α∗ + εl)t)

2 (x)

)
dx

−
∫

Ω

(
Ate

−δtα∗t (x)

∫
Ω

k(x, y) rN∗
t (y) dy − Bt

2
(α∗t (x))

2

)
dx

]

= lim
ε→0+

T−1∑
t=0

{∫
Ω

Ate
−δtα∗t (x)

∫
Ω

k(x, y)

[
rN ε

t (y)− rN∗
t (y)

ε

]
dy dx

+

∫
Ω

[
Ate

−δtlt(x)

∫
Ω

k(x, y)rN ε
t (y) dy −Btα

∗
t lt

]
dx

}

=
T−1∑
t=0

{∫
Ω

Ate
−δtα∗t (x)

∫
Ω

k(x, y)r ψt(y) dy dx

+

∫
Ω

Ate
−δtlt(x)

∫
Ω

k(x, y)rN∗
t (y) dy dx−

∫
Ω

Btα
∗
t lt dx

}

=
T−1∑
t=0

{∫
Ω

rψt(y)

∫
Ω

Ate
−δtα∗t (x)k(x, y) dx dy

+

∫
Ω

Ate
−δtlt(x)

∫
Ω

k(x, y)rN∗
t (y) dy dx−

∫
Ω

Btα
∗
t lt dx

}
,

where the last equality is obtained by switching the order of integration on first integral.

We use the coefficient of the ψt term as the non-homogeneous term in the adjoint system.

Substituting from the adjoint system (3.2), we simplify the first term in the J deriva-
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tive expression

T−1∑
t=0

∫
Ω

rψt(y)

∫
Ω

Ate
−δtα∗t (x)k(x, y) dx dy

=
T−1∑
t=0

{∫
Ω

ψt(y)

[
pt(y)− r

∫
Ω

(1− α∗t (x))k(x, y)pt+1(x) dx dy

]}

=
T−1∑
t=0

∫
Ω

pt+1ψt+1(x) dx−
T−1∑
t=0

∫
Ω

pt+1(x)(1− α∗t (x))

∫
Ω

k(x, y)rψt(y) dy dx (3.4)

In the last equality, we rewrote first sum, added pTψT term, and used pT = 0, ψ0 = 0.

Then using the ψ system, (3.4) becomes (3.1):

T−1∑
t=0

∫
Ω

pt+1(x)

[
ψt+1(x)− (1− αt(x))

∫
Ω

k(x, s)rψt(s) ds

]
dx

=
T−1∑
t=0

∫
Ω

pt+1(x)

(
−lt(x)

∫
Ω

k(x, y)rN∗
t (y) dy

)
dx.

We go back to differentiating J , substituting out for first term from the above p, ψ

calculation,

0 ≥
T−1∑
t=0

{∫
Ω

rψt(y)

∫
Ω

Ate
−δtα∗t (x)k(x, y) dx dy

+

∫
Ω

Ate
−δtlt(x)

∫
Ω

k(x, y)rN∗
t (y) dy dx−

∫
Ω

Btα
∗
t lt dx

}

=
T−1∑
t=0

∫
Ω

lt(x)

[
−pt+1(x)

∫
Ω

k(x, y)rN∗
t (y) dy −Btα

∗
t (x)

+Ate
−δt

∫
Ω

k(x, y)rN∗
t (y) dy

]
dx.

For t = 0, 1, . . . , T − 1, we obtain:

α∗t =
1

Bt

(
Ate

−δt − pt+1(x)
) ∫

Ω

rk(x, y)N∗
t (y) dy
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subject to the control bounds. Choosing appropriate choices of variation l on the size of

α∗ we obtain the representation (3.3)

The optimal control satisfies an integro-difference condition involving optimal state

and adjoint variables.

The optimality system is (1.1) and (3.2) with N0(x) known, pT (x) = 0, and the

characterization condition (3.3).

4 Uniqueness Result

Theorem 4.1. If Bt, t = 0, 1, . . . , T − 1 are sufficiently large, then the optimal control is

unique.

Proof. We show uniqueness by showing strict concavity of the map:

α ∈ U −→ J(α).

The concavity follows from showing for all α, l ∈ U, 0 < ε < 1

g′′(ε) > 0

where g(ε) = J(εl + (1− ε)α) = J(α+ ε(l − α)).

First, we calculate

g′(ε) = lim
τ→0

J(α+ (ε+ τ)(l − α))− J(α+ ε(l − α))

τ

=
T−1∑
t=0

[∫
Ω

Ate
−δt(αt + ε(lt − αt))

∫
Ω

rk(x, y)ψε
t(y) dy dx

+

∫
Ω

Ate
−δt(lt − αt)

∫
Ω

rk(x, y)N ε
t (y) dy dx

−Bt

∫
Ω

(αt + ε(lt − αt))(lt − αt) dx

]
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where, for t = 0, 1, . . . , T − 1

N ε = N(α+ ε(l − α))

N ε,τ = N(α+ (ε+ τ)(l − α))

N ε,τ
t −N ε

t

τ
⇀ ψε

t as τ → 0

ψε
t+1(x) = (1− (αt + ε(lt − αt))) (x)

∫
Ω

rk(x, y)ψε
t dy

− (lt − αt)

∫
Ω

rk(x, y)N ε
t dy

ψε
0 ≡ 0.

Note that ψε
t(x) can be estimated in terms of l − α. For example,

|ψε
2(x)| ≤ C1

[∫
Ω

|l0 − α0| dy + |l1 − α1|(x)
]
,

where C1 depends on L∞ bounds on the states, k(x, y) and r. One can continue to

estimate iteratively.

Next we obtain

g′′(ε) =
T−1∑
t=0

[∫
Ω

Ate
−δt(αt + ε(lt − αt))

∫
Ω

rk(x, y)σε
t(y) dy dx

+2

∫
Ω

Ate
−δtε(lt − αt)

∫
Ω

rk(x, y)ψε
t(y) dy dx−Bt

∫
Ω

(lt − αt)
2 dx

]
where, for t = 0, 1, . . . , T − 1

σε
t+1(x) = (1− (αt + ε(lt − αt))) (x)

∫
Ω

rk(x, y)σε
t dy − 2(lt − αt)

∫
Ω

rk(x, y)ψε
t dy

σε
0 ≡ 0.
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We can estimate ∫
Ω

|σε
t(y)| dy

in terms of ∫
Ω

(lk − αk)
2 dy, k = 0, 1, . . . , t− 1.

Using the estimates,

g′′(ε) ≤
T−1∑
t=0

(C2 − εBt)

∫
Ω

(lt − αt)
2 dy,

which gives the desired concavity for Bt’s sufficiently large.

5 Numerical Results

Dispersion kernels have been measured for a wide variety of organisms. The resulting

data display an incredible variety of patterns and strategies. Some dispersal kernels

have been found to be leptokurtic (fat-tailed) rather than normal [6]. We explored the

following four dispersal kernels. A finite range dispersal kernel [7]

k(x, y) =


0, x ≤ y −R,

π
4R

cos
[

π
2R
|x− y|

]
, y −R ≤ x ≤ y +R,

0, x ≥ y +R.

(5.1)

may be appropriate if the surrounding environment is incompatible with the organism

being studied. The Laplace kernel [4],

k(x, y) =
1

2
β exp (−β|x− y|) , (5.2)
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Figure 1: Graph of all Kernel

or normal dispersal [6],

k(x, y) =

√
β

π
exp

(
−β (x− y)2) , (5.3)

are reasonable choices for certain populations. The biology of some organisms results in

a radically different dispersal pattern. The ballistic dispersal,

k(x, y) =
3a

2
|x− y|b−1 exp−a|x− y|3 (5.4)

is appropriate for propagules that are launched by the parent organism [12]. Figure 1

shows the dispersal pattern for each of the four examples for an organism located at 0.5.

One of the most challenging aspects of calculating the solution for this system of

equations is estimating the spatial grid needed for accuracy. We use the composite

trapezoid rule to estimate each integral [1]. The number of points needs to be large

enough to minimize error but not so large that the run time is bogged down with needless

calculations. The dispersal kernel chosen has the most influence over the spatial mesh

size needed for accuracy. For each kernel, we estimated the spatial mesh size by solving

the forward equations for N alone without control. We repeat this estimation using a

progressively finer mesh size until the differences between estimates for N were less than

one percent. This mesh size was then used to set up the numerical solution for the

optimal control problem.

The search for the optimal control uses an iterative process. With the initial estimates

for the adjoint, p, N0 and α, the iterative process begins by solving the equations for

N forward in time. Then using these new estimates for N , new p values are calculated

backwards through time. The control α is updated using a convex combination of the

old value and the value calculated from characterization (3.3). The new estimates of N
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and p are compared with those from the previous iteration. If the difference is less than

one percent for every point, the final control α is saved as the optimal solution.

For each of our numerical solutions, we used 10 time steps. We also assumed that

Ω = [0, 1], which was divided into 5000 spatial grid points for the trapezoid rule. The

figures are generated using following parameter values (unless stated in the captions):

r = 1.8, At = 1.0, Bt = 1600, δ = 0.1, α0 = 0.1, N0(x) = 75.0, and for kernels R = 0.5, β =

5.0, a = 250, b = 3. A number of different initial conditions including N0(x) = 1− x and

N0(x) = x(1−x) were tested, but the results were not significantly different. We found the

shape of the optimal solution to be quite sensitive to the discount rate; unless otherwise

noted we took δ = 0.35.

Figure 2 shows the optimal harvesting routine as calculated by the numerical simu-

lation using the kernel given by ( 5.1). Figure 3 shows the population that results from

the optimal harvesting scheme of Figure 2. The Laplace, normal and finite-range ker-

nels were found to be qualitatively similar enough to produce similar optimal solutions.

Figures 4 and 5 show variation in the shape of the optimal solution based on the ballis-

tic dispersal kernel. Figures 6 and 7 show that changes in the discount rate radically

changes the harvesting strategy. A very high discount rate results in early harvesting

(Figure 6) while a very low discount rate results in higher harvesting in the last few time

steps (Figure 7). This makes sense since after such early harvest, one would invest the

money taking advantage of the high interest rate. It can be be noted that for kernels (5.1

- 5.3), the harvest begins on the edges of the domain earlier than the middle. This is a

result of the relatively lower contribution to overall population size from the population

on the edges from dispersal.
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Figure 2: Harvest Rate for Kernel 1

Figure 3: Population for Kernel 1

Figure 4: Harvest Rate for Kernel 4

Figure 5: Population for Kernel 4

Figure 6: Harvest Rate for Kernel 1 with 0.35 discount rate

Figure 7: Harvest Rate for Kernel 1 with 0.05 discount rate
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These results are also highly dependent on the growth function used. Using a growth

function that includes a carrying capacity could result in more variable optimal solutions.

These types of problems will be pursued in future work.

Acknowledgment: This work was partially supported by National Science Foundation

grant DMS 0110920.

References

[1] Burden, R. L. and Faires, J. D., Numerical Analysis, PWS Publishing Company,

Boston, 1993.

[2] Fan, L. and Wang, C., The Discrete Maximum Principle, John Wiley, New York,

1964.

[3] Kamien, M. I. and Schwarz, N. L., Dynamic Optimization, North-Holland, Amster-

dam 1991.

[4] Kot, M., Discrete-time Traveling Waves: Ecological Examples, J. Math. Biol. (1992)

30: 413-436.

[5] Kot, M., Do Invading Organisms Do the Wave?, Canadian Applied Mathematics

Quarterly, 2003. In press.

[6] Kot, M., Lewis, M. A., and Driessche, P. van den, Dispersal Data and the Spread of

Invading Organisms, Ecology (1996) 77: 2027-2042.

[7] Kot, M. and Schaffer, W. M., Discrete-Time Growth-Dispersal Models, Mathemati-

cal Biosciences (1986) 80: 109-136.



Integro-Difference Model 17

[8] Lewis, M. A. and Van Kirk, R. W., Integrodifference Models for Persistence in

Fragmented Habitats, Bull. Math. Biology (1997) 59: 107-137.

[9] Lenhart S. and Protopopescu V., Modeling and Analysis in Support of Decision

Making for Technological Investment, Oak Ridge National Laboratory Technical

Memo ORNL/TM-2003/116.

[10] Li, X. and Yong, J., Optimal Control Theory for Infinite Dimensional Systems,
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