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Abstract

A system of ordinary differential equations, which describes the interaction of
HIV and T -cells in the immune system is utilized, and optimal controls representing
drug treatment strategies of this model are explored. Two types of treatments
are used, and existence and uniqueness results for the optimal control pair are
established. The optimality system is derived and then solved numerically using
an iterative method with Runge-Kutta fourth order scheme.
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1 Introduction

AIDS - Acquired Immunity Deficiency Syndrome is the disease that has affected the whole
world in the 20 years since it was first detected. It is caused by Human Immunodeficiency
Virus (HIV). Of the 34.3 million people worldwide living with HIV infection today, more
than 24 million are in the developing world.

There is still much work to be completed in the search for an anti-HIV vaccine. st
of the chemotherapies are aimed at killing or halting the pathogen, but treatment which
can boost the immune system can serve to help the body fight infection on its own [9].
The new treatments are aimed at reducing viral population and improving the immune
response. This brings new hope to the treatment of HIV infection, and we are exploring
strategies for such treatments using optimal control techniques.

An ordinary differential equation (ODE) model (taken from a Kirschner and Webb
model [9]), which describes the interaction of CD4+T cells and HIV in the immune
system is utilized, and optimal control of this ODE model is explored.

Once HIV enters the body, the human immune system tries to get rid of it. The
invasion is reported to CD4+T cells. The CD4 is a protein marker in the surface of the
T cell, and the letter T refers to thymus, the organ responsible for maturing these cells
after they migrate from the bone marrow (where they are manufactured). The surface of
CD4+T possesses a protein that can bind to foreign substances such as HIV. The HIV
needs a host in order to reproduce and the above mentioned protein provides shelter. The
HIV virus is a retrovirus, the RNA of virus is converted into DNA inside the CD4+T

cell. Thus, when infected CD4+T cells begin to multiply to fight this pathogen, they
produce more virus. See [3, 7, 8, 9, 11] for more details on disease progression.

Let T, V represent the concentration of the uninfected CD4+T cells and free infectious
virus particles respectively, and u1, u2 represent two different treatment strategies. As our
control classes we choose measurable functions defined on a fixed interval (as treatments
can not be continued for infinite time period due to hazardous side effects) satisfying
0 ≤ ai ≤ ui(t) ≤ bi < 1 for i = 1, 2. For most of HIV chemotherapy drugs, the length of
treatment is less then 500 days [3].

The state system is

dT (t)

dt
= s1 −

s2V (t)

B1 + V (t)
− µT (t) − kV (t)T (t) + u1(t)T (t) (1.1)

dV (t)

dt
=

g(1 − u2(t))V (t)

B2 + V (t)
− cV (t)T (t) (1.2)

satisfying T (0) = T0 and V (0) = V0, where T represents the concentration of CD4+T
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cells, V the concentration of HIV particles. The term s1−
s2V (t)

B1+V (t)
is the source/proliferation

of unaffected T cells , µT (t) is the natural loss of uninfected T cells, kV (t)T (t) is loss by

infection, gV (t)
B2+V (t)

is viral contribution to plasma and cV (t)T (t) is the viral loss. Similarly,
µ is death rate of T cells, k is infection rate of T cells, g is the input rate of an external
virus source , c is the loss rate of virus and B1, B2 are half saturation constants. The
controls u1 and u2 represent the immune boosting and viral suppressing drugs respec-
tively. The definitions and numerical data for the parameters can be found in Kirschner
and Webb [9, p. 74, Table 1].

The objective functional to be maximized is

J(u1, u2) =

∫ tf

0

[T − (A1u
2
1 + A2u

2
2)] dt (1.3)

The first term represent the benefit of T cells and the other terms are systemic costs of
the drug treatments. The positive constants A1 and A2 balance the size of the terms, and
u2

1, u
2
2 reflect the severity of the side effects of the drugs. When drugs such as interleukin

are administered in high dose, they are toxic to the human body, which justifies the
quadratic terms in the functional. Our goal is maximizing the number of T cells and
minimizing the systemic cost to the body. We seek an optimal control pair, u∗

1, u
∗

2 such
that

J(u∗

1, u
∗

2) = max{J(u1, u2)|(u1, u2) ∈ U}

where U = {(u1, u2)|ui measurable , ai ≤ ui ≤ bi, t ∈ [0, tf ], for i = 1, 2} is the
control set.

See Kirschner and Webb [9] for treatment strategies using immune boosting and
delaying AIDS progression. They developed a mathematical model of dynamics of disease
progression and IL-2 treatment of the HIV-infected immune system. Their model is
based upon the key markers of HIV progression, CD4+T cell level and viral levels in the
plasma, and the model agrees with preliminary results from clinical trials. They also
predict that immunotherapy administered during the early stages of disease progression
is most beneficial for raising CD4+T cell count.

See references [2], [3], and [7] for control problems on HIV infection in different types
of models using treatment with a single drug and similar objective functional. In this
paper we consider two controls, one boosts the immune system and other delays the HIV
progression. This paper is the first one to address multiple controls for using more than
one type of drug concurrently, which is the current practice in HIV treatment.

Tan and Xiang [13] have developed a stochastic model for the HIV pathogenesis
under anti-viral drugs. They estimated the numbers of infectious free HIV and non-
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infectious free HIV as well as the number of T cells through the extended Kalman filter
method. Berman [1] also used a stochastic model with a three-stage diffusion process
(pre-treatment interval, the control treatment interval and post treatment interval) for
the T cell level of an HIV-infected individual. His goal was to determine the best time
to intervene with an antiviral drug using a Brownian motion representation of the T cell
level.

In section 2, we investigate the existence of an optimal control pair. In section 3,
we derive the optimal control pair using Pontryagin’s Maximum Principle [12]. In the
same section we also derive the optimality system which characterizes the optimal control
pair. The uniqueness of the optimality system is proved in section 4, and some numerical
results are illustrated in the last section.

2 Existence of an Optimal Control Pair

The boundedness of solutions of the system (1.1) and (1.2) for the finite time interval is
used to prove the existence of an optimal control pair. This can be proved using the fact
that supersolutions T and V satisfying

dT

dt
= s1 + u1(t)T

dV

dt
=

gV

B2 + V

are bounded on a finite time interval.
The existence of the optimal control pair can be obtained by using a result by Fleming

and Rishel ([4, Th. 4.1, p. 68-69]).

Theorem 2.1. Consider the control problem with system equations (1.1), (1.2). There
exists ~u∗ = (u∗

1, u
∗

2) ∈ U such that

max
(u1,u2)∈U

J(u1, u2) = J(u∗

1, u
∗

2).

Proof: To use an existence result, Theorem III.4.1 from [4], we must check the following
properties:

1. The set of controls and corresponding state variables is nonempty.

2. The control U set is convex and closed.
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3. The RHS of the state system is bounded by a linear function in the state and
control variables.

4. The integrand of the objective functional is concave on U .

5. There exists constants c1, c2 > 0, and β > 1 such that the integrand L(T, u1, u2) of
the objective functional satisfies

L(T, u1, u2) ≤ c2 − c1

(

|u1|
2 + |u2|

2
)β/2

.

In order to verify these conditions, we use a result by Lukes ([10, Th 9.2.1, p. 182] to give
the existence of solutions of ODE’s (1.1) and (1.2) with bounded coefficients, which gives
condition 1. We note that the solutions are bounded. Our control set satisfies condition 2.
Since our state system is bilinear in u1, u2, the RHS of (1.1) and (1.2) satisfies condition
3, using the boundedness of the solutions.

Note that the integrand of our objective functional is concave. Also we have the last
condition needed

T − (A1u
2
1 + A2u

2
2) ≤ c2 − c1(|u1|

2 + |u2|
2)

where c2 depends on the upper bound on T , and c1 > 0 since A1, A2 > 0. We conclude
there exists an optimal control pair.

3 Optimality System

In section 2, we proved the existence of an optimal control pair system for maximizing
the functional (1.3) subject to (1.1)-(1.2). In order to derive the necessary conditions for
this optimal control pair, we use Pontryagin’s Maximum Principle [12].

The Lagrangian is defined as following:

L =
[

T − (A1u
2
1 + A2u

2
2)
]

+λ1

[

s1 −
s2V (t)

B1 + V (t)
− µT (t) − kV (t)T (t) + u1(t)T (t)

]

+λ2

[

g(1 − u2(t))V (t)

B2 + V (t)
− cV (t)T (t)

]

+w11(t)(b1 − u1) + w12(t)(u1 − a1)

+w21(t)(b2 − u2) + w22(t)(u2 − a2),
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where w11(t), w12(t), w21(t), w22(t) ≥ 0 are penalty multipliers satisfying

w11(t)(b1 − u1) = 0, w12(t)(u1 − a1) = 0 at u∗

1

and

w21(t)(b2 − u2) = 0, w22(t)(u2 − a2) = 0 at u∗

2.

Theorem 3.1. Given optimal controls u∗

1, u
∗

2 and solutions T ∗, V ∗ of the corresponding
state system (1.1)-(1.2), there exists adjoint variables λ1, λ2 satisfying

λ′

1 = −1 + λ1 [µ + kV ∗(t) − u∗

1(t)] + λ2cV
∗(t)

λ′

2 = λ1

[

B1s2

(B1 + V ∗(t))2
+ kT ∗(t)

]

− λ2

[

B2g(1 − u∗

2(t))

(B2 + V ∗(t))2
− cT ∗(t)

]

and λ1(tf) = λ2(tf) = 0, the transversality conditions. Furthermore

u∗

1(t) = min

{

max

{

a1,
1

2A1
(λ1T

∗(t))

}

, b1

}

u∗

2(t) = min

{

max

{

a2,−
λ2

2A2

V ∗(t)

(B2 + V ∗(t))

}

, b2

}

Proof: The form of the adjoint equations and transversality conditions are standard
results from Pontryagin’s Maximum Principle [12]. We differentiate the Lagrangian with
respect to states, T and V respectively, and then the adjoint system can be written as:

λ′

1 = −
∂L

∂T
= −1 + λ1 [µ + kV ∗(t) − u∗

1(t)] + λ2cV
∗(t) (3.1)

λ′

2 = −
∂L

∂V
= λ1

[

B1s2

(B1 + V ∗(t))2
+ kT ∗(t)

]

− λ2

[

B2g(1 − u∗

2(t))

(B2 + V ∗(t))2
− cT ∗(t)

]

(3.2)

The optimality equations [6] are :

∂L

∂u1
= −2A1u

∗

1(t) + λ1T
∗(t) − w11(t) + w12(t) = 0 at u∗

1

∂L

∂u2

= −2A2u
∗

2(t) + λ2

[

−
gV ∗(t)

B2 + V ∗(t)

]

− w21(t) + w22(t) = 0 at u∗

2.
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Hence we obtain

u∗

1(t) =
1

2A1
[λ1T

∗(t) − w11(t) + w12(t)] (3.3)

u∗

2(t) =
1

2A2

[

−λ2
gV ∗(t)

B2 + V ∗(t)
− w21(t) + w22(t)

]

. (3.4)

By standard control arguments involving the bounds on the controls, we conclude

u∗

1 =







1
2A1

λ1T
∗(t) if a1 < 1

2A1

λ1T
∗(t) < b1

a1 if 1
2A1

λ1T
∗(t) ≤ a1

b1 if 1
2A1

λ1T
∗(t) ≥ b1.

In compact notation, u∗

1(t) = min

{

max

{

a1,
1

2A1

(λ1T
∗(t))

}

, b1

}

.

Similarly, we conclude

u∗

2 =











− λ2

2A2

V ∗(t)
B2+V ∗(t)

if a2 < − λ2

2A2

V ∗(t)
B2+V ∗(t)

< b2

a2 if − λ2

2A2

V ∗(t)
B2+V ∗(t)

≤ a2

b2 if − λ2

2A2

V ∗(t)
B2+V ∗(t)

≥ b2.

In compact notation, u∗

2(t) = min

{

max

{

a2,−
λ2

2A2

V ∗(t)

B2 + V ∗(t)

}

, b2

}

.

The optimality system consists of the state system coupled with the adjoint system
with the initial and transversality conditions together with the characterization of the
optimal control pair

u∗

1(t) = min

{

max

{

a1,
1

2A1
(λ1T

∗(t))

}

, b1

}

(3.5)

u∗

2(t) = min

{

max

{

a2,−
λ2

2A2

V ∗(t)

B2 + V ∗(t)

}

, b2

}

. (3.6)

Utilizing (3.5) and (3.6), we have the following optimality system.

dT (t)

dt
= s1 −

s2V (t)

B1 + V (t)
− µT (t) − kV (t)T (t)
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+ min

{

max

{

a1,
1

2A1
(λ1T (t))

}

, b1

}

T (t)

dV (t)

dt
=

g
(

1 − min
{

max
{

a2,−
λ2

2A2

V (t)
B2+V (t)

}

, b2

})

V (t)

B2 + V (t)
− cV (t)T (t)

λ′

1 = −1 + λ1

[

µ + kV (t) − min

{

max

{

a1,
1

2A1

(λ1T (t))

}

, b1

}]

+λ2cV (t) (3.7)

λ′

2 = λ1

[

B1s2

(B1 + V (t))2
+ kT (t)

]

−λ2





B2g
(

1 − min
{

max
{

a2,−
λ2

2A2

V (t)
B2+V (t)

}

, b2

})

(B2 + V (t))2
− cT (t)





λ1(tf ) = λ1(tf) = 0, and T (0) = T0, V (0) = V0.

4 Uniqueness of the Optimality System

We will state this simple lemma (without proof) needed for the proof of the uniqueness
of solutions of the optimality system for the small time interval.

Lemma 4.1. The function u∗(s) = min(max(s, a), b)) is Lipschitz continuous in s, where
a < b are some fixed positive constants.

Theorem 4.1. For tf sufficiently small, bounded solutions to the optimality system are
unique.

Proof: Suppose (T, V, λ1, λ2) and (T , V , λ1, λ2) are two different solutions of our opti-
mality system (3.7). Let T = eλtp, V = eλtq, λ1 = e−λtw, λ2 = e−λtz and T = eλtp, V =
eλtq, λ1 = e−λtw, λ2 = e−λtz, where λ > 0 is to be chosen. Further we let

u∗

1(t) = min

{

max

{

a1,
1

2A1
(wp)

}

, b1

}

u∗

2(t) = min

{

max

{

a2,−
z

2A2

q

B2 + eλtq

}

, b2

}
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and

u∗

1(t) = min

{

max

{

a1,
1

2A1
(w p)

}

, b1

}

u∗

2(t) = min

{

max

{

a2,−
z

2A2

q

B2 + eλtq

}

, b2

}

.

Now we substitute T = eλtp in to the first ODE of (3.7) and get

p′ + λp = e−λts1 −
s2q

B1 + eλtq
− µp − keλtpq

+ min

{

max

{

a1,
1

2A1
(wp)

}

, b1

}

p. (4.1)

Similarly, for V = eλtq, λ1 = e−λtw, λ2 = e−λtz, we obtain

q′ + λq =
g
(

1 − min
{

max
{

a2,−
z

2A2

q
B2+eλtq

}

, b2

})

q

B2 + eλtq
− ceλtpq (4.2)

−w′ + λw = eλt − w

[

µ + keλtq − min

{

max

{

a1,
1

2A1
(pw)

}

, b1

}]

−ceλtqz (4.3)

−z′ + λz = −w

[

B1s2

(B1 + eλtq)2
+ keλtp

]

+z





B2g
(

1 − min
{

max
{

a2,−
z

2A2

q
B2+eλtq

}

, b2

})

(B2 + eλtq)2
− ceλtp



 .(4.4)

Now we subtract the equations for T and T , V and V , λ1 and λ1, λ2 and λ2. Then
multiply each equation by appropriate difference of functions and integrate from 0 to tf .
Next we add all four integral equations and will use estimates to obtain uniqueness.

Using Lemma 4.1, we have

|u∗

1(t) − u∗

1(t)| ≤
1

2A1
|wp − wp|
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and

|u∗

2(t) − u∗

2(t)| ≤

∣

∣

∣

∣

1

2A2

(

zq

B2 + eλtq
−

zq

B2 + eλtq

)
∣

∣

∣

∣

≤
1

2A2

∣

∣

∣

∣

B2(zq − zq) + eλt(z − z)

(B2 + eλtq) (B2 + eλtq)

∣

∣

∣

∣

.

We illustrate one case of the estimate (which uses |u∗

1 − u∗

1| estimate):

1

2
(p − p)2(tf) + λ

∫ tf

0

(p − p)2 dt

≤

∫ tf

0

∣

∣

∣

∣

s2q

B1 + eλtq
−

s2q

B1 + eλtq

∣

∣

∣

∣

|p − p| dt +

∫ tf

0

µ|p − p|2 dt

+k

∫ tf

0

eλt|pq − pq||p − p| dt +

∫ tf

0

|u∗

1p − u∗

1p||p − p| dt

≤ C1

∫ tf

0

[

|p − p|2 + |q − q|2 + |w − w|2
]

dt

+C2e
λtf

∫ tf

0

[

|p − p|2 + |q − q|2
]

dt,

where the constants C1 and C2 depend on the coefficients and the bounds on states and
adjoints. Combining four of these estimates gives

1

2
(p − p)2(tf) +

1

2
(q − q)2(tf) +

1

2
(w − w)2(0) +

1

2
(z − z)2(0)

+λ

∫ tf

0

[

(p − p)2 + (q − q)2 + (w − w)2 + (z − z)2
]

dt

≤
(

C̃1 + C̃2e
3λtf
)

∫ tf

0

[

(p − p)2 + (q − q)2 + (w − w)2 + (z − z)2
]

dt.

Thus from above equation we conclude that

(

λ − C̃1 − C̃2e
3λtf
)

∫ tf

0

[

(p − p)2 + (q − q)2 + (w − w)2 + (z − z)2
]

dt ≤ 0
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where C̃1, C̃2 depend on the coefficients and the bounds on p, q, w, z.

If we choose λ such that λ > C̃1 + C̃2 and tf <
1

3λ
ln

(

λ − C̃1

C̃2

)

, then p = p,

q = q, w = w, z = z. Hence the solution is unique for small time.

See Fister et.al [3] for proof of a similar uniqueness result. The uniqueness for a
small time interval is usual in “two-point” boundary value problems due to opposite
time orientations; the state equations have initial conditions and the adjoint equations
have final time conditions. The optimal controls, u∗

1, u
∗

2 are characterized in terms of the
unique solution of the optimality system. The above optimal controls give an optimal
treatment strategy for the HIV infected patient under the scenario of these two types of
drug treatments.

5 Numerical Illustration

The optimality system is solved using an iterative method with a Runge-Kutta fourth
order scheme. The state system with an initial guess is solved forward in time and then
the adjoint system is solved backward in time. The controls are updated at the end of
each iteration using the formula for optimal controls, which we derived in section 3 (in
the last part of Theorem 3.1). The iterations continue until convergence is achieved. See
[5] for background on such iterative algorithms.

Using different combinations of weight factors (A1, A2) and upperbounds (b1, b2) for
controls, one can generate several treatment schedules for various time periods. Here we
illustrate a case for two different values of A1 for a 50-day treatment schedule. Figures
1-4 are plotted using A1 = 250000, A2 = 75, b1 = 0.02, b2 = 0.9, Figures 5-8 are plotted
using A1 = 500000 and keeping the rest of the parameters unchanged. Note that due to
the type of drugs administered, the upper bound b1 of the u1 control is much smaller than
the upper bound b2 of the u2 control [9]. To balance the effect of these different sizes of
b1, b2 in the objective functional, the balancing coefficient A1 is taken much larger than
A2. Figure 1 and 2 represent the controls u∗

1, u
∗

2 for drug administration schedule for the
first set of parameters. The immune boosting drug is administered in full scale nearly up
to 40 days and then is tapered off. Similarly the viral suppression drug is administered in
full scale nearly up to 5 days and then is tapered off. Figure 3 represents the number of
T cells during our treatment period. The T cell population increases almost linearly up
to 45 days and levels off after that time. Figure 4 represents the virus population during
our treatment period. In the beginning, we see a sharp decrease in the virus population
and after few days it starts to increase steadily with some fluctuations. Figure 5 and
Figure 6 represent the optimal controls u∗

1, u
∗

2 for drug administration schedule for the
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second set of parameters. The immune boosting drug is administered in full scale nearly
up to 25 days and then tapers off. Similarly the viral suppression drug is administered in
full scale nearly up to 4 days and then tapers off. When we compare Figures 7 and 8 for
T and V with Figures 3 and 4, we see that higher A1 values reduce the T cell population
and increase the virus population.

After observing results of various combinations of parameters, we conclude that the
higher the weight factor, the earlier we start tapering off the treatment. This higher
weight factor means that the drug is more toxic and that drug is used less. Both drug
treatments are given over the same interval but the time of giving the maximum level
varies. The virus population drops for the first few days and starts to build up again.
We can keep the virus population under a certain level but can not eradicate it.

Note that the format of the optimal controls do agree with those in the papers [2, 3, 7]
with only one control. The interesting feature here is the interplay between the two con-
trols, and the more lengthy treatment with immunotherapy (u1 control) is recommended.

The results in these examples do not depend on the initial guess. The number of
iterations required for these examples is about 10.

Acknowledgment: This work is a part of my dissertation under the direction of Prof.
Suzanne Lenhart at the University of Tennessee, Knoxville, and partially supported by
National Science Foundation grants DMS 9704199 and DMS 0110920.
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