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Systems

Consider

max [ F(E 2 (1), 2a(t), wi(£), ualt), us(t)) di
subject to

d;tl = g1(t, x1(t), ma(t), ua(t), ua(t), us(t))

CZQ = go(t, w1(t), 22(1), wa(t), ua(t), us(t))

£Cl<t0> = A, T2 (to) = 6

where ov and (3 are fixed.

Notice we have 2 state variables and 3 control vari-
ables.

For each state equation, there is one associated ad-
joint equation.

We consider
H(t,$1<t>,Q?Q(t),Ul(t),UQ(t),Ug(t , )\1 t ,)\2
f<t7x1< )7372( >7u1<
+)\1<t)gl<t7 $1<t)7 582(75)7 ul(
+)\2<t)92<t7$1<t)7$2<t)7u1<t , U2 t , U3

then the necessary conditions are



Then the necessary conditions are

d\ OH  d)\; OH

E _({956'1’ dt _8:1:2
Ai(t1) =0, Ag(t1) =0
oOH OH OH
~— =0, ,— =0, and — =0
du1 T dUQ Al dU3

dﬂ?l B OH d[L’l B OH

dt  dN, dt d\

REMARK

If each state variable has two conditions (as an ini-
tial and a final time condition), then the adjoint vari-

able associated with that state trajectory will have NO
transversality condition!



Problem 1

minJ(u) = [ (z2 +u?) dt
d d
subject to Sl T, a2 U

dt dt
21(0) = 29(0) = 0,21(1) = 1, z5(1) unspecified

Here, H = x5 + u* + Mz + Aou. The necessary con-
ditions are as follows:

1(t) = _8:1:1:0
, OH
Ao(t) = —&52:—1—)\1

OH A
with A2(1) = 0 and Sy 2u 4+ Ao = 0. Thus, u = —22.

Thus, A\ (t) = C} Wllbrlere (' is a constant.

Also, A\o(t) = —(1 + C1)t + Cy where Ao(1) = 0 gives
02 =1+ Cl.

Therefore, \y(t) = —(1 4+ C)(1 —t). Using this and
the representation for w in the xo differential equati%n

(1 ;L Ch) (t— 752>

allows us to determine that xo(t) =

since 5(0) = 0.



(1 —2|— Cl>(t _ t6> since 1(0)

In addition, z1(t) =
0.

Using that z1(1) = 1, we obtain that C; = —7. Com-
bining all this information, we have the complete rep-
resentation of the state solution pair, adjoint solution
pair, and the optimal control.
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r1(t) = 2t2 — 2753
To(t) = 3t — th
A(t) = =7

Ao(t) = —6+ 6t
u(t) = 3 —3t

Problem for You

1

min J(u) = [ (z1(t) + 2u2(t)) di
subject to

dx dx

= an(t), 2 = —alt) + ult)

with 1(0) = 2, and z5(0) = 1.



Optimal Control Related To
Immunotherapy

The goal is to maximize the functional below over a
class of piecewise continuous controls ,u(t), subject to
three ordinary differential equations that describe the
interaction of the

e effector (activated immune system) cells -
x(t),
e tumor cells - y(t),

e and the interleukin-2 (IL-2) cells in the sin-
gle tumor site - z(t).

The differential equations(state system) are

dx P1TZ

— = cy — t 1
= =t P s ()
dy axy

— = roy(l — by) — 2
o= Tyl —by) oty (2)
dz  poxy

— = — 3% 3
i gy M8 (3)

with initial conditions
z(0) =1, y(0) =1, and 2(0) = 1.



Table 1. Parameter values

Eq.(2) 10 < ¢ <0.05 g2 =0.03]| p1 = 0.1245| g; = 22107
Eq.(3) | go = 1210° |ry =0.18 | b= 121077 |a=1
Eq.(4) | ug = 10 po=>5 g3 = 1210° |0

U = {u(t) piecewise continuous|0 < u(t) < 1,Vt € [0,T]}

The basic framework of this problem is to prove the
following;:

e the existence of the optimal control and uniqueness

of the optimality system (state system coupled with
the adjoint system)

e and the characterization of the optimal control.




Existence

Theorem 1 Given the objective functional, J(u) =
iz (t) — y(t) + 2(¢) — 5 B(u(t))?]dt, where U = {u(t)
piecewise continuous | 0 < w(t) < 1Vt € [0,7T]}
subject to Eq. (1), (2), (3) with x(0) =1, y(0) =1,
and z(0) = 1, then there exists an optimal control
uw* such that maxg<,<1 J(u) = J(ux) if the following
conditions are met.

1. The class of all initial conditions with a control
u in the admissible control set along with each
state equation being satisfied is not empty.

2. The admissible control set U is closed and con-
ver.

3. Each right hand side of Eq. (1), (2), (3) is
continuous, is bounded above by a sum of the
bounded control and the state, and can be written
as a linear function of u with coefficients depend-
ing on time and the state.

4. The integrand of J(u) is concave on U and is
bounded above by ¢y — ciu? with ¢; > 0.
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Proof. For the third condition,the system is bilinear
in the control and can be rewritten as

T, X u)=a(t, X)+su

(6)

7 — . .
where X = (z,¥, z) and & is a vector valued function

of )_5

Using that the solutions are bounded, we see that

fit, X )| <

prc 0
0 7“20
p2 0 0

X

Y
z

_|_

S1U
0
0

< C X + 51 [ul

where C; depends on the coefficients on the system.

For the last condition, J is concave on U and

z(t) = y(t) + 2(t) — lj u(t)] < x(t) + (1) -
Cg — Cl ‘ u(t) ‘2 .

Slu(o)?
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Characterization

Here, we discuss the theorem that relates to the charac-
terization of the optimal control. This technique relates
to the concept of Lagrange multipliers studied in calcu-
lus.

L(xv y ,z U, )\17)\2,>\3,w1,w2)

= alt) — ylt) + 2(0) — S (u(0)? + (@ o+

ary
4 A( (1 — by) >+)\< _ )
2 7”2y 3/ g2ty g+ y H3z

+ wl(t) (t)—l—w2( )(1—ut)

pP1TZ

q +z

+ u(t)31>

where w1 (t) > 0, ws(t) > 0 are penalty multipliers satisfying

wi(t)u(t) =0, wy(t) (1 —u(t)) =0

at the optimal u*.
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Theorem 2 Given an optimal control u* and solu-
tions of the corresponding state system, there exist
adjoint variables N\; for 1 = 1,2,3 satisfying the fol-
lowing:

L P12
S R
dt ox { + 1< M2+91+Z>
Y ay W P2y }
o 5 92ty g3ty
L
d; =5 = —[=1+ Aic — Ag(1ry — 2roby)
Yy
goax g3p2x
— )\ + A
gty P g4y
d)\g 0L gip1x
— = = —] T
o o { + )\1(g1 e >\3M3}

where \;(T') = 0 for i=1, 2, 8. Further, u* can be
represented by

u* = min |1 (Alsl)+
- 18 ,
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Sketch of the proof

As in calculus, to determine the interior maximum
for our Lagrangian, we take the partial derivative of L
with respect to u and set it equal to zero.

oL

T
ou

Upon simplification we have

u*(t) _ A1S81 + w1g> — ’LUQ(?f) (7>

(i) On the set {t|0 < u*(t) < 1}, wi(t) = 0 = wy(?).
From equation (7),

ut(t) = A151

B

(ii) On theset {t|u*(t) = 1}, wi(t) = 0. Consequently,

)\181 — ’lUQ(?f)
1 =u"(t) =
u(t) =
’UJ2<t) )\181
1 =
or 1+ I B
t A
Since wo(t) > walf) L1

> 1. Thus, 1 = < —.
us, U’ I
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(iii) On the set {t|u*(t) = 0}, wo(t) = 0. From equa-
tion 7, we have

A f
0= ui(t) = 1312"‘“( )

Since wq(t) > 0, then A;s1 < 0.

. A1S1 " « : .
Notice (B) = (0 = u*(t) in this case.

Combining all three cases in a compact form gives

>\181 i

W (£) = min (1, (B) ) (8)
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Optimality System

Incorporating the representation of the optimal treat-
ment control, we have the state system coupled with the
adjoint system below.

d s\ T
X — ¢y — oz + p1rz +<m1n (17(181> ))81

dt g1+ 2 B
dy axy
A 1 — by) —
dt roy( y) g0+
dz _ pary iy
dc)i\t Gty
1 p1rz
e | T S
dt { * 1( 'u2+gl+z>
W ay 4 D2y }
g2+ Yy g3ty
dA
dt2 = —{—1 —|—>\10— )\2(7“2 — 2T2by>
goax gspa2T
— A + A
2(92 + 1) 3(93 + ?J)Z}
dA3 gipix
— = —|1+ A — A
It { 1(g1+ )2 3M3}
with x(0) = 1, y(0) = 1, 2(0) = 1, \(T) = 0 for
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Uniqueness

Since the state system moves forward in time and the
adjoint system moves backward in time, we have a small
challenge with uniqueness.

Theorem 3 For T sufficiently small, the solution
to the optimality system s unique.

Sketch. We suppose that (x,y,2,A1,A2,A3) and (Z.,7,2,A1,A2,A3)
are two distinct solutions to the optimality system.

Let m > 0 be chosen such that = €™h, y = ™y,
z=eM™Mf AN =e ™Mw, Ny =¢e v, A3 =e "], T =
e™h, y=emMq, z =e"f, A\ = e ™w, Ny = e ™Y
and A3 = e ™. In addition,

u = min (1, (”;f”ﬂj (9)

)

and

% = min (1, (enj;f”sl)+) . (10)
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Substitution of z = €™ f and A3 = e " into the
third and the sixth differential equation of the optimal-

d
ity system yields the following where - = =
- pahge™
f+mf = o~ msf
g3+ qe
. mt  wpthgie™
J—mj) = —€e = — JH3

(g1 + femt)?

Example of an estimate. .

FG=50 f2

IA Jrl/\—FK"°|

_|_

_|_

wh — fPwh)dt < [} fA(wh —wh)(j — j)dt
fy whif® = f2)(j — j)dt
M ) (j — j)(wh — wh)dt

M MyM, [ (G — 5)(f — fdt
M2?M M2M
1 T = h)%at + il?

M2M7 + M My + 2M7M2M1
2
MMM, [ (f — f)2dt

fy (w

W (G —7)%dt

where M, My, M, are the upper bounds for f,w, h
respectively.
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Using the nonnegativity of the variable expressions
evaluated at the initial and the final time and simplify-
ing, the inequality is reduced to the following:

(m — Dy —Ce¥T) [F[(h— h)* + (¢ — q)*dt
+ f (f = FP+ (w =)+ (v—0)*+ (j — j)}dt <0

where Dy, C' depend on all coefficients and bounds on
all solution variables.

We choose m such that m — Dy — Ce®™T > 0. Since
the natural logarithm is an increasing function, then

In (m ng) > 3mT (11)

if m > C'+ Dy. Thus, this gives that T < 37lnln (m;:fh).
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