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Systems

Consider

max
u

∫ t1
t0

f (t, x1(t), x2(t), u1(t), u2(t), u3(t)) dt

subject to
dx1

dt
= g1(t, x1(t), x2(t), u1(t), u2(t), u3(t))

dx2

dt
= g2(t, x1(t), x2(t), u1(t), u2(t), u3(t))

x1(t0) = α, x2 (t0) = β

where α and β are fixed.
Notice we have 2 state variables and 3 control vari-

ables.
For each state equation, there is one associated ad-

joint equation.

We consider

H(t, x1(t), x2(t), u1(t), u2(t), u3(t) , λ1(t), λ2(t)) =

f (t, x1(t), x2(t), u1(t) , u2(t), u3(t))

+λ1(t)g1(t, x1(t), x2(t), u1(t) , u2(t), u3(t))

+λ2(t)g2(t, x1(t), x2(t), u1(t) , u2(t), u3(t)),

then the necessary conditions are



3

Then the necessary conditions are

dλ1

dt
= −∂H

∂x1
,

dλ2

dt
= −∂H

∂x2

λ1(t1) = 0, λ2(t1) = 0
∂H

du1
= 0, ,

∂H

du2
= 0, and

∂H

du3
= 0

dx1

dt
=

∂H

dλ1
,

dx1

dt
=

∂H

dλ2

REMARK

If each state variable has two conditions (as an ini-
tial and a final time condition), then the adjoint vari-
able associated with that state trajectory will have NO
transversality condition!
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Problem 1

min
u

J(u) =
∫ 1
0 (x2 + u2) dt

subject to
dx1

dt
= x2,

dx2

dt
= u

x1(0) = x2(0) = 0, x1(1) = 1, x2(1) unspecified

Here, H = x2 + u2 + λ1x2 + λ2u. The necessary con-
ditions are as follows:

λ′1(t) = −∂H

∂x1
= 0

λ′2(t) = −∂H

∂x2
= −1 − λ1

with λ2(1) = 0 and
∂H

∂u
= 2u + λ2 = 0. Thus, u = −λ2

2
.

Thus, λ1(t) = C1 where C1 is a constant.
Also, λ2(t) = −(1 + C1)t + C2 where λ2(1) = 0 gives

C2 = 1 + C1.
Therefore, λ2(t) = −(1 + C1)(1 − t). Using this and

the representation for u in the x2 differential equation

allows us to determine that x2(t) =
−(1 + C1)

2
(t− t2

2
)

since x2(0) = 0.



5

In addition, x1(t) =
−(1 + C1)

2
(
t2

2
− t3

6
) since x1(0) =

0.
Using that x1(1) = 1, we obtain that C1 = −7. Com-

bining all this information, we have the complete rep-
resentation of the state solution pair, adjoint solution
pair, and the optimal control.

x1(t) =
3

2
t2 − 1

2
t3

x2(t) = 3t− 3

2
t2

λ1(t) = −7

λ2(t) = −6 + 6t

u(t) = 3 − 3t

Problem for You

min
u

J(u) =
∫ 5
0 (x1(t) +

1

2
u2(t)) dt

subject to

dx1

dt
= x2(t),

dx2

dt
= −x2(t) + u(t)

with x1(0) = 2, and x2(0) = 1.
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Optimal Control Related To
Immunotherapy

The goal is to maximize the functional below over a
class of piecewise continuous controls ,u(t), subject to
three ordinary differential equations that describe the
interaction of the

• effector (activated immune system) cells -
x(t),

• tumor cells - y(t),

• and the interleukin-2 (IL-2) cells in the sin-
gle tumor site - z(t).

The differential equations(state system) are

dx

dt
= cy − µ2x +

p1xz

g1 + z
+ u(t)s1 (1)

dy

dt
= r2y(1 − by) − axy

g2 + y
(2)

dz

dt
=

p2xy

g3 + y
− µ3z (3)

with initial conditions
x(0) = 1, y(0) = 1, and z(0) = 1.
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Table 1. Parameter values
Eq.(2) 0 ≤ c ≤ 0.05 µ2 = 0.03 p1 = 0.1245 g1 = 2x107

Eq.(3) g2 = 1x105 r2 = 0.18 b = 1x10−9 a=1
Eq.(4) µ3 = 10 p2 = 5 g3 = 1x103 0

U = {u(t) piecewise continuous|0 ≤ u(t) ≤ 1,∀t ∈ [0, T ]}
(4)

J(u) =
∫ T
0 [x(t) − y(t) + z(t) − B

2
(u(t))2]dt (5)

The basic framework of this problem is to prove the
following:

• the existence of the optimal control and uniqueness
of the optimality system (state system coupled with
the adjoint system)

• and the characterization of the optimal control.
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Existence

Theorem 1 Given the objective functional, J(u) =∫T
0 [x(t)− y(t) + z(t)− 1

2B(u(t))2]dt, where U = {u(t)
piecewise continuous | 0 ≤ u(t) ≤ 1 ∀t ∈ [0, T ]}
subject to Eq. ( 1) , (2), (3) with x(0) = 1, y(0) = 1,
and z(0) = 1, then there exists an optimal control
u∗ such that max0≤u≤1 J(u) = J(u∗) if the following
conditions are met.

1. The class of all initial conditions with a control
u in the admissible control set along with each
state equation being satisfied is not empty.

2. The admissible control set U is closed and con-
vex.

3. Each right hand side of Eq. (1), (2), (3) is
continuous, is bounded above by a sum of the
bounded control and the state, and can be written
as a linear function of u with coefficients depend-
ing on time and the state.

4. The integrand of J(u) is concave on U and is
bounded above by c2 − c1u

2 with c1 > 0.
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Proof. For the third condition,the system is bilinear
in the control and can be rewritten as

−→
f (t,

−→
X, u) = −→α (t,

−→
X ) + s1u (6)

where
−→
X = (x, y, z) and −→α is a vector valued function

of
−→
X .

Using that the solutions are bounded, we see that
∣∣∣∣∣~f (t, ~X, u)

∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣∣∣∣


p1 c 0
0 r2 0
p2 0 0




x
y
z



∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣


s1u
0
0



∣∣∣∣∣∣∣∣∣∣∣∣
≤ C1

∣∣∣∣∣ ~X
∣∣∣∣∣ + s1 |u|


where C1 depends on the coefficients on the system.

For the last condition, J is concave on U and

x(t) − y(t) + z(t) − B

2
[u(t)]2 ≤ x(t) + z(t) − B

2
[u(t)]2

≤ C2 − C1 | u(t) |2 .
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Characterization

Here, we discuss the theorem that relates to the charac-
terization of the optimal control. This technique relates
to the concept of Lagrange multipliers studied in calcu-
lus.

L(x, y , z, u, λ1, λ2, λ3, w1, w2)

= x(t)− y(t) + z(t)− B

2
(u(t))2 + λ1

(
cy − µ2x +

p1xz

g1 + z
+ u(t)s1

)

+ λ2

(
r2y(1− by)− axy

g2 + y

)
+ λ3

(
p2xy

g3 + y
− µ3z

)
+ w1(t)u(t) + w2(t) (1− u(t))

where w1(t) ≥ 0, w2(t) ≥ 0 are penalty multipliers satisfying

w1(t)u(t) = 0, w2(t) (1− u(t)) = 0

at the optimal u∗.
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Theorem 2 Given an optimal control u∗ and solu-
tions of the corresponding state system, there exist
adjoint variables λi for i = 1, 2, 3 satisfying the fol-
lowing:

dλ1

dt
= −∂L

∂x
= −

[
1 + λ1

(
−µ2 +

p1xz

g1 + z

)

− λ2
ay

g2 + y
+ λ3

p2y

g3 + y

]

dλ2

dt
= −∂L

∂y
= −

[
−1 + λ1c− λ2(r2 − 2r2by)

− λ2
g2ax

(g2 + y)2
+ λ3

g3p2x

(g3 + y)2
]

dλ3

dt
= −∂L

∂z
= −

[
1 + λ1

g1p1x

(g1 + z)2
− λ3µ3

]

where λi(T ) = 0 for i=1, 2, 3. Further, u∗ can be
represented by

u∗ = min

1,
λ1s1

B


+ .
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Sketch of the proof

As in calculus, to determine the interior maximum
for our Lagrangian, we take the partial derivative of L
with respect to u and set it equal to zero.

∂L

∂u
= 0

Upon simplification we have

u∗(t) =
λ1s1 + w1(t) − w2(t)

B
(7)

(i) On the set {t|0 < u∗(t) < 1}, w1(t) = 0 = w2(t).
From equation (7),

u∗(t) =
λ1s1

B
.

(ii) On the set {t|u∗(t) = 1}, w1(t) = 0. Consequently,

1 = u∗(t) =
λ1s1 − w2(t)

B

or 1 +
w2(t)

B
=

λ1s1

B
.

Since w2(t) ≥ 0, then 1 +
w2(t)

B
≥ 1. Thus, 1 = u∗ ≤ λ1s1

B
.
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(iii) On the set {t|u∗(t) = 0}, w2(t) = 0. From equa-
tion 7, we have

0 = u∗(t) =
λ1s1 + w1(t)

b
.

Since w1(t) ≥ 0, then λ1s1 ≤ 0.

Notice
λ1s1

B


+

= 0 = u∗(t) in this case.

Combining all three cases in a compact form gives

u∗(t) = min

1,
λ1s1

B


+ (8)
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Optimality System

Incorporating the representation of the optimal treat-
ment control, we have the state system coupled with the
adjoint system below.

dx

dt
= cy − µ2x +

p1xz

g1 + z
+

(
min

1,
λ1s1

B


+)s1

dy

dt
= r2y(1 − by) − axy

g2 + y
dz

dt
=

p2xy

g3 + y
− µ3z

dλ1

dt
= −

[
1 + λ1

(
−µ2 +

p1xz

g1 + z

)

− λ2
ay

g2 + y
+ λ3

p2y

g3 + y

]

dλ2

dt
= −

[
−1 + λ1c− λ2(r2 − 2r2by)

− λ2
g2ax

(g2 + y)2
+ λ3

g3p2x

(g3 + y)2
]

dλ3

dt
= −

[
1 + λ1

g1p1x

(g1 + z)2
− λ3µ3

]

with x(0) = 1, y(0) = 1, z(0) = 1, λi(T ) = 0 for

i = 1, 2, 3.
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Uniqueness

Since the state system moves forward in time and the
adjoint system moves backward in time, we have a small
challenge with uniqueness.

Theorem 3 For T sufficiently small, the solution
to the optimality system is unique.

Sketch. We suppose that (x,y,z,λ1,λ2,λ3) and (x̄,ȳ,z̄,λ̄1,λ̄2,λ̄3)
are two distinct solutions to the optimality system.

Let m > 0 be chosen such that x = emth, y = emtq,
z = emtf , λ1 = e−mtw, λ2 = e−mtv, λ3 = e−mtj, x̄ =
emth̄, ȳ = emtq̄, z̄ = emtf̄ , λ̄1 = e−mtw̄, λ̄2 = e−mtv̄,
and λ̄3 = e−mtj̄. In addition,

u = min

1,
e

−mtws1

B


+ (9)

and

ū = min

1,
e

−mtw̄s1

B


+ . (10)
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Substitution of z = emtf and λ3 = e−mtj into the
third and the sixth differential equation of the optimal-
ity system yields the following where · = d

.dt

ḟ + mf =
p2hqemt

g3 + qemt
− µ3f

j̇ −mj = −emt − wp1hg1e
mt

(g1 + femt)2
− jµ3

Example of an estimate. . .

∫ T
0 (j − j̄)( f̄ 2 wh− f 2w̄h)dt ≤

∫ T
0 f̄ 2(wh− w̄h)(j − j̄)dt

+
∫ T
0 w̄h(f 2 − f̄ 2)(j − j̄)dt

≤ M 2
1

∫ T
0 (j − j̄)(wh− w̄h)dt

+ 2M7M2M1

∫ T
0 (j − j̄)(f − f̄ )dt

≤ M 2
1M7

2

∫ T
0 (h− h̄)2dt +

M 2
1M2

2

∫ T
0 (w − w̄)2dt

+
M 2

1M7 + M 2
1M2 + 2M7M2M1

2

∫ T
0 (j − j̄)2dt

+ M7M2M1

∫ T
0 (f − f̄ )2dt

where M1, M7, M2 are the upper bounds for f̄ , w̄, h̄
respectively.
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Using the nonnegativity of the variable expressions
evaluated at the initial and the final time and simplify-
ing, the inequality is reduced to the following:

(m − D1 − C̃e3mT )
∫ T
0 [(h− h̄)2 + (q − q̄)2dt

+
∫ T
0 (f − f̄ )2 + (w − w̄)2 + (v − v̄)2 + (j − j̄)2]dt ≤ 0

where D1, C̃ depend on all coefficients and bounds on
all solution variables.

We choose m such that m−D1 − C̃e3mT > 0. Since
the natural logarithm is an increasing function, then

ln
m−D1

C̃

 > 3mT (11)

if m > C̃+D1. Thus, this gives that T < 1
3mln

(
m−D1

C̃

)
.
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