Optimal Control Concepts for Systems

K. Renee Fister

Systems

Consider

$$
\max _{u} \quad \int_{t_{0}}^{t_{1}} f\left(t, x_{1}(t), x_{2}(t), u_{1}(t), u_{2}(t), u_{3}(t)\right) d t
$$

subject to

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =g_{1}\left(t, x_{1}(t), x_{2}(t), u_{1}(t), u_{2}(t), u_{3}(t)\right) \\
\frac{d x_{2}}{d t} & =g_{2}\left(t, x_{1}(t), x_{2}(t), u_{1}(t), u_{2}(t), u_{3}(t)\right)
\end{aligned}
$$

$x_{1}\left(t_{0}\right)=\alpha, x_{2}\left(t_{0}\right)=\beta$
where α and β are fixed.
Notice we have 2 state variables and 3 control variables.

For each state equation, there is one associated adjoint equation.

We consider

$$
\left.\begin{array}{rl}
H(t, & x_{1}(t), x_{2}(t), u_{1}(t), u_{2}(t), u_{3}(t)
\end{array}, \lambda_{1}(t), \lambda_{2}(t)\right)=
$$

then the necessary conditions are

Then the necessary conditions are

$$
\begin{aligned}
& \frac{d \lambda_{1}}{d t}=-\frac{\partial H}{\partial x_{1}}, \quad \frac{d \lambda_{2}}{d t}=-\frac{\partial H}{\partial x_{2}} \\
& \lambda_{1}\left(t_{1}\right)=0, \quad \lambda_{2}\left(t_{1}\right)=0 \\
& \frac{\partial H}{d u_{1}}=0, \quad, \quad \frac{\partial H}{d u_{2}}=0, \text { and } \frac{\partial H}{d u_{3}}=0 \\
& \frac{d x_{1}}{d t}=\frac{\partial H}{d \lambda_{1}}, \quad \frac{d x_{1}}{d t}=\frac{\partial H}{d \lambda_{2}}
\end{aligned}
$$

REMARK

If each state variable has two conditions (as an initial and a final time condition), then the adjoint variable associated with that state trajectory will have $\mathbf{N O}$ transversality condition!

Problem 1

$$
\begin{aligned}
\min _{u} J(u) & =\int_{0}^{1}\left(x_{2}+u^{2}\right) d t \\
\text { subject to } \frac{d x_{1}}{d t} & =x_{2}, \frac{d x_{2}}{d t}=u \\
x_{1}(0)=x_{2}(0) & =0, x_{1}(1)=1, x_{2}(1) \text { unspecified }
\end{aligned}
$$

Here, $H=x_{2}+u^{2}+\lambda_{1} x_{2}+\lambda_{2} u$. The necessary conditions are as follows:

$$
\begin{aligned}
\lambda_{1}^{\prime}(t) & =-\frac{\partial H}{\partial x_{1}}=0 \\
\lambda_{2}^{\prime}(t) & =-\frac{\partial H}{\partial x_{2}}=-1-\lambda_{1}
\end{aligned}
$$

with $\lambda_{2}(1)=0$ and $\frac{\partial H}{\partial u}=2 u+\lambda_{2}=0$. Thus, $u=-\frac{\lambda_{2}}{2}$.
Thus, $\lambda_{1}(t)=C_{1}$ where C_{1} is a constant.
Also, $\lambda_{2}(t)=-\left(1+C_{1}\right) t+C_{2}$ where $\lambda_{2}(1)=0$ gives $C_{2}=1+C_{1}$.

Therefore, $\lambda_{2}(t)=-\left(1+C_{1}\right)(1-t)$. Using this and the representation for u in the x_{2} differential equation allows us to determine that $x_{2}(t)=\frac{-\left(1+C_{1}\right)}{2}\left(t-\frac{t^{2}}{2}\right)$ since $x_{2}(0)=0$.

In addition, $x_{1}(t)=\frac{-\left(1+C_{1}\right)}{2}\left(\frac{t^{2}}{2}-\frac{t^{3}}{6}\right)$ since $x_{1}(0)=$ 0.

Using that $x_{1}(1)=1$, we obtain that $C_{1}=-7$. Combining all this information, we have the complete representation of the state solution pair, adjoint solution pair, and the optimal control.

$$
\begin{aligned}
x_{1}(t) & =\frac{3}{2} t^{2}-\frac{1}{2} t^{3} \\
x_{2}(t) & =3 t-\frac{3}{2} t^{2} \\
\lambda_{1}(t) & =-7 \\
\lambda_{2}(t) & =-6+6 t \\
u(t) & =3-3 t
\end{aligned}
$$

Problem for You

$$
\min _{u} J(u)=\int_{0}^{5}\left(x_{1}(t)+\frac{1}{2} u^{2}(t)\right) d t
$$

subject to

$$
\frac{d x_{1}}{d t}=x_{2}(t), \frac{d x_{2}}{d t}=-x_{2}(t)+u(t)
$$

with $x_{1}(0)=2$, and $x_{2}(0)=1$.

Optimal Control Related To Immunotherapy

The goal is to maximize the functional below over a class of piecewise continuous controls,$u(t)$, subject to three ordinary differential equations that describe the interaction of the

- effector (activated immune system) cells $\mathrm{x}(\mathrm{t})$,
- tumor cells - $y(t)$,
- and the interleukin-2 (IL-2) cells in the single tumor site - $\mathrm{z}(\mathrm{t})$.

The differential equations(state system) are

$$
\begin{align*}
& \frac{d x}{d t}=c y-\mu_{2} x+\frac{p_{1} x z}{g_{1}+z}+u(t) s_{1} \tag{1}\\
& \frac{d y}{d t}=r_{2} y(1-b y)-\frac{a x y}{g_{2}+y} \tag{2}\\
& \frac{d z}{d t}=\frac{p_{2} x y}{g_{3}+y}-\mu_{3} z \tag{3}
\end{align*}
$$

with initial conditions
$x(0)=1, y(0)=1$, and $z(0)=1$.

Table 1. Parameter values

Eq.(2)	$0 \leq c \leq 0.05$	$\mu_{2}=0.03$	$p_{1}=0.1245$	$g_{1}=2 x 10^{7}$
Eq.(3)	$g_{2}=1 x 10^{5}$	$r_{2}=0.18$	$b=1 \times 10^{-9}$	$a=1$
Eq.(4)	$\mu_{3}=10$	$p_{2}=5$	$g_{3}=1 x 10^{3}$	0

$U=\{u(t)$ piecewise continuous $\mid 0 \leq u(t) \leq 1, \forall t \in[0, T]\}$

$$
\begin{equation*}
J(u)=\int_{0}^{T}\left[x(t)-y(t)+z(t)-\frac{B}{2}(u(t))^{2}\right] d t \tag{5}
\end{equation*}
$$

The basic framework of this problem is to prove the following:

- the existence of the optimal control and uniqueness of the optimality system (state system coupled with the adjoint system)
- and the characterization of the optimal control.

Existence

Theorem 1 Given the objective functional, $J(u)=$ $\int_{0}^{T}\left[x(t)-y(t)+z(t)-\frac{1}{2} B(u(t))^{2}\right] d t$, where $U=\{u(t)$ piecewise continuous $\mid 0 \leq u(t) \leq 1 \forall t \in[0, T]\}$ subject to Eq. (1) , (2), (3) with $x(0)=1, y(0)=1$, and $z(0)=1$, then there exists an optimal control u^{*} such that $\max _{0 \leq u \leq 1} J(u)=J(u *)$ if the following conditions are met.

1. The class of all initial conditions with a control u in the admissible control set along with each state equation being satisfied is not empty.
2. The admissible control set U is closed and convex.
3. Each right hand side of Eq. (1), (2), (3) is continuous, is bounded above by a sum of the bounded control and the state, and can be written as a linear function of u with coefficients depending on time and the state.
4. The integrand of $J(u)$ is concave on U and is bounded above by $c_{2}-c_{1} u^{2}$ with $c_{1}>0$.

Proof. For the third condition, the system is bilinear in the control and can be rewritten as

$$
\begin{equation*}
\vec{f}(t, \vec{X}, u)=\vec{\alpha}(t, \vec{X})+s_{1} u \tag{6}
\end{equation*}
$$

where $\vec{X}=(x, y, z)$ and $\vec{\alpha}$ is a vector valued function of \vec{X}.

Using that the solutions are bounded, we see that $\left[|\vec{f}(t, \vec{X}, u)| \leq\left|\left(\begin{array}{lll}p_{1} & c & 0 \\ 0 & r_{2} & 0 \\ p_{2} & 0 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)\right|+\left|\left(\begin{array}{l}s_{1} u \\ 0 \\ 0\end{array}\right)\right| \leq C_{1}|\vec{X}|+s_{1}|u|\right]$ where C_{1} depends on the coefficients on the system.

For the last condition, J is concave on U and

$$
\begin{gathered}
x(t)-y(t)+z(t)-\frac{B}{2}[u(t)]^{2} \leq x(t)+z(t)-\frac{B}{2}[u(t)]^{2} \\
\leq \quad C_{2}-C_{1}|u(t)|^{2}
\end{gathered}
$$

Characterization

Here, we discuss the theorem that relates to the characterization of the optimal control. This technique relates to the concept of Lagrange multipliers studied in calculus.

$$
\begin{aligned}
L(x, & \left.y \quad, z, u, \lambda_{1}, \lambda_{2}, \lambda_{3}, w_{1}, w_{2}\right) \\
& =x(t)-y(t)+z(t)-\frac{B}{2}(u(t))^{2}+\lambda_{1}\left(c y-\mu_{2} x+\frac{p_{1} x z}{g_{1}+z}+u(t) s_{1}\right) \\
& +\lambda_{2}\left(r_{2} y(1-b y)-\frac{a x y}{g_{2}+y}\right)+\lambda_{3}\left(\frac{p_{2} x y}{g_{3}+y}-\mu_{3} z\right) \\
& +w_{1}(t) u(t)+w_{2}(t)(1-u(t))
\end{aligned}
$$

where $w_{1}(t) \geq 0, w_{2}(t) \geq 0$ are penalty multipliers satisfying

$$
w_{1}(t) u(t)=0, \quad w_{2}(t)(1-u(t))=0
$$

at the optimal u^{*}.

Theorem 2 Given an optimal control u^{*} and solutions of the corresponding state system, there exist adjoint variables λ_{i} for $i=1,2,3$ satisfying the following:

$$
\begin{aligned}
\frac{d \lambda_{1}}{d t}=-\frac{\partial L}{\partial x} & =-\left[1+\lambda_{1}\left(-\mu_{2}+\frac{p_{1} x z}{g_{1}+z}\right)\right. \\
& \left.-\lambda_{2} \frac{a y}{g_{2}+y}+\lambda_{3} \frac{p_{2} y}{g_{3}+y}\right] \\
\frac{d \lambda_{2}}{d t}=-\frac{\partial L}{\partial y} & =-\left[-1+\lambda_{1} c-\lambda_{2}\left(r_{2}-2 r_{2} b y\right)\right. \\
& \left.-\lambda_{2} \frac{g_{2} a x}{\left(g_{2}+y\right)^{2}}+\lambda_{3} \frac{g_{3} p_{2} x}{\left(g_{3}+y\right)^{2}}\right] \\
\frac{d \lambda_{3}}{d t}=-\frac{\partial L}{\partial z} & =-\left[1+\lambda_{1} \frac{g_{1} p_{1} x}{\left(g_{1}+z\right)^{2}}-\lambda_{3} \mu_{3}\right]
\end{aligned}
$$

where $\lambda_{i}(T)=0$ for $i=1$, 2, 3. Further, u^{*} can be represented by

$$
u^{*}=\min \left(1,\left(\frac{\lambda_{1} s_{1}}{B}\right)^{+}\right)
$$

Sketch of the proof

As in calculus, to determine the interior maximum for our Lagrangian, we take the partial derivative of L with respect to u and set it equal to zero.

$$
\frac{\partial L}{\partial u}=0
$$

Upon simplification we have

$$
\begin{equation*}
u^{*}(t)=\frac{\lambda_{1} s_{1}+w_{1}(t)-w_{2}(t)}{B} \tag{7}
\end{equation*}
$$

(i) On the set $\left\{t \mid 0<u^{*}(t)<1\right\}, w_{1}(t)=0=w_{2}(t)$. From equation (7),
$u^{*}(t)=\frac{\lambda_{1} s_{1}}{B}$.
(ii) On the set $\left\{t \mid u^{*}(t)=1\right\}, w_{1}(t)=0$. Consequently,

$$
1=u^{*}(t)=\frac{\lambda_{1} s_{1}-w_{2}(t)}{B}
$$

or $1+\frac{w_{2}(t)}{B}=\frac{\lambda_{1} s_{1}}{B}$.
Since $w_{2}(t) \geq 0$, then $1+\frac{w_{2}(t)}{B} \geq 1$. Thus, $1=u^{*} \leq \frac{\lambda_{1} s_{1}}{B}$.
(iii) On the set $\left\{t \mid u^{*}(t)=0\right\}, w_{2}(t)=0$. From equation 7, we have

$$
0=u^{*}(t)=\frac{\lambda_{1} s_{1}+w_{1}(t)}{b}
$$

Since $w_{1}(t) \geq 0$, then $\lambda_{1} s_{1} \leq 0$.
Notice $\left(\frac{\lambda_{1} s_{1}}{B}\right)^{+}=0=u^{*}(t)$ in this case.

Combining all three cases in a compact form gives

$$
\begin{equation*}
u^{*}(t)=\min \left(1,\left(\frac{\lambda_{1} s_{1}}{B}\right)^{+}\right) \tag{8}
\end{equation*}
$$

Optimality System

Incorporating the representation of the optimal treatment control, we have the state system coupled with the adjoint system below.

$$
\begin{aligned}
& \frac{d x}{d t}=c y-\mu_{2} x+\frac{p_{1} x z}{g_{1}+z}+\left(\min \left(1,\left(\frac{\lambda_{1} s_{1}}{B}\right)^{+}\right)\right) s_{1} \\
& \frac{d y}{d t}=r_{2} y(1-b y)-\frac{a x y}{g_{2}+y} \\
& \frac{d z}{d t}=\frac{p_{2} x y}{g_{3}+y}-\mu_{3} z \\
& \frac{d \lambda_{1}}{d t}=-\left[1+\lambda_{1}\left(-\mu_{2}+\frac{p_{1} x z}{g_{1}+z}\right)\right. \\
&\left.-\lambda_{2} \frac{a y}{g_{2}+y}+\lambda_{3} \frac{p_{2} y}{g_{3}+y}\right] \\
& \frac{d \lambda_{2}}{d t}=-\left[-1+\lambda_{1} c-\lambda_{2}\left(r_{2}-2 r_{2} b y\right)\right. \\
&\left.-\lambda_{2} \frac{g_{2} a x}{\left(g_{2}+y\right)^{2}}+\lambda_{3} \frac{g_{3} p_{2} x}{\left(g_{3}+y\right)^{2}}\right] \\
& \frac{d \lambda_{3}}{d t}=-\left[1+\lambda_{1} \frac{g_{1} p_{1} x}{\left(g_{1}+z\right)^{2}}-\lambda_{3} \mu_{3}\right] \\
& \text { with } x(0)=1, y(0)=1, z(0)=1, \lambda_{i}(T)=0 \text { for } \\
& i=1,2,3 .
\end{aligned}
$$

Uniqueness

Since the state system moves forward in time and the adjoint system moves backward in time, we have a small challenge with uniqueness.

Theorem 3 For T sufficiently small, the solution to the optimality system is unique.

Sketch. We suppose that (x,y,z, $\left.\lambda_{1}, \lambda_{2}, \lambda_{3}\right)$ and $\left(\bar{x}, \bar{y}, \bar{z}, \overline{\lambda_{1}}, \bar{\lambda}_{2}, \overline{\lambda_{3}}\right)$ are two distinct solutions to the optimality system.

Let $m>0$ be chosen such that $x=e^{m t} h, y=e^{m t} q$, $z=e^{m t} f, \lambda_{1}=e^{-m t} w, \lambda_{2}=e^{-m t} v, \lambda_{3}=e^{-m t} j, \bar{x}=$ $e^{m t} \bar{h}, \bar{y}=e^{m t} \bar{q}, \bar{z}=e^{m t} \bar{f}, \bar{\lambda}_{1}=e^{-m t} \bar{w}, \bar{\lambda}_{2}=e^{-m t} \bar{v}$, and $\bar{\lambda}_{3}=e^{-m t} \bar{j}$. In addition,

$$
\begin{equation*}
u=\min \left(1,\left(\frac{e^{-m t} w s_{1}}{B}\right)^{+}\right) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{u}=\min \left(1,\left(\frac{e^{-m t} \bar{w} s_{1}}{B}\right)^{+}\right) \tag{10}
\end{equation*}
$$

Substitution of $z=e^{m t} f$ and $\lambda_{3}=e^{-m t} j$ into the third and the sixth differential equation of the optimality system yields the following where $\cdot=\frac{d}{. d t}$

$$
\begin{aligned}
\dot{f}+m f & =\frac{p_{2} h q e^{m t}}{g_{3}+q e^{m t}}-\mu_{3} f \\
\dot{j}-m j & =-e^{m t}-\frac{w p_{1} h g_{1} e^{m t}}{\left(g_{1}+f e^{m t}\right)^{2}}-j \mu_{3}
\end{aligned}
$$

Example of an estimate...

$$
\begin{aligned}
\int_{0}^{T}(j-\bar{j})(& \left.\bar{f}^{2} w h-f^{2} \overline{w h}\right) d t \leq \int_{0}^{T} \bar{f}^{2}(w h-\overline{w h})(j-\bar{j}) d t \\
& +\int_{0}^{T} \overline{w h}\left(f^{2}-\bar{f}^{2}\right)(j-\bar{j}) d t \\
& \leq M_{1}^{2} \int_{0}^{T}(j-\bar{j})(w h-\overline{w h}) d t \\
& +2 M_{7} M_{2} M_{1} \int_{0}^{T}(j-\bar{j})(f-\bar{f}) d t \\
& \leq \frac{M_{1}^{2} M_{7}}{2} \int_{0}^{T}(h-\bar{h})^{2} d t+\frac{M_{1}^{2} M_{2}}{2} \int_{0}^{T}(w-\bar{w})^{2} d t \\
& +\frac{M_{1}^{2} M_{7}+M_{1}^{2} M_{2}+2 M_{7} M_{2} M_{1}}{2} \int_{0}^{T}(j-\bar{j})^{2} d t \\
& +M_{7} M_{2} M_{1} \int_{0}^{T}(f-\bar{f})^{2} d t
\end{aligned}
$$

where M_{1}, M_{7}, M_{2} are the upper bounds for $\bar{f}, \bar{w}, \bar{h}$ respectively.

Using the nonnegativity of the variable expressions evaluated at the initial and the final time and simplifying, the inequality is reduced to the following:

$$
\begin{aligned}
(m & \left.-D_{1}-\tilde{C} e^{3 m T}\right) \int_{0}^{T}\left[(h-\bar{h})^{2}+(q-\bar{q})^{2} d t\right. \\
& \left.+\int_{0}^{T}(f-\bar{f})^{2}+(w-\bar{w})^{2}+(v-\bar{v})^{2}+(j-\bar{j})^{2}\right] d t \leq 0
\end{aligned}
$$

where D_{1}, \tilde{C} depend on all coefficients and bounds on all solution variables.

We choose m such that $m-D_{1}-\tilde{C} e^{3 m T}>0$. Since the natural logarithm is an increasing function, then

$$
\begin{equation*}
\ln \left(\frac{m-D_{1}}{\tilde{C}}\right)>3 m T \tag{11}
\end{equation*}
$$

if $m>\tilde{C}+D_{1}$. Thus, this gives that $T<\frac{1}{3 m} \ln \left(\frac{m-D_{1}}{\tilde{C}}\right)$.

References

[1] K. R. Fister and J. C. Panetta, Optimal Control Applied To Cell-Cycle-Specific Cancer Chemotherapy, SIAM J. Appl. Math. 60 (2000) 1059-1072.
[2] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, New York, 1975.
[3] D. Kirschner and J. C. Panetta, Modeling immunotherapy of the tumor - immune interaction, Journal of Mathematical Biology, Volume 27, pages 235-252, 1998.
[4] D. L. Lukes, Differential Equations: Classical to Controlled, vol. 162 of Mathematics in Science and Engineering, Academic Press, New York, 1982.

