The Johnson Homomorphism and its Cokernel

Jim Conant (partially joint with Martin Kassabov, Karen Vogtmann)

May 24, 2014

Appetizer: $\operatorname{Aut}\left(F_{n}\right)$ and cocommutative Hopf algebras

Let H be a cocommutative Hopf algebra.

Antipode

Associativity:

$(\varepsilon \otimes \mathrm{id}) \circ \Delta=(\mathrm{id} \otimes \varepsilon) \circ \Delta=\mathrm{id}:$

$m \circ(\eta \otimes \mathrm{id})=m \circ(\mathrm{id} \otimes \boldsymbol{\eta})=\mathrm{id}:$

Compatibility of m and Δ :

$$
m \circ(\mathrm{id} \otimes S) \circ \Delta=\eta \circ \varepsilon=m \circ(S \otimes \mathrm{id}) \circ \Delta:
$$

Compatibility of S and Δ :

$$
-(5)-(S)-
$$

$$
S^{2}=\mathrm{id}:
$$

Compatibility of S and m :

Cocommutativity:

We define an action of $\operatorname{End}\left(F_{n}\right)$ on $H^{\otimes n}$ as follows.
(1) Let $\varphi: F_{n} \rightarrow F_{n}$ be an endomorphism. $\varphi\left(x_{i}\right)=w_{i}$.

We define an action of $\operatorname{End}\left(F_{n}\right)$ on $H^{\otimes n}$ as follows.
(1) Let $\varphi: F_{n} \rightarrow F_{n}$ be an endomorphism. $\varphi\left(x_{i}\right)=w_{i}$.
(2) Define $\varphi \cdot h_{1} \otimes \cdots \otimes h_{n}$ as follows. If x_{i} appears m_{i} times in all of the image words w_{1}, \ldots, w_{n}, consider $\Delta^{m_{i}}\left(h_{i}\right)=h_{i}^{(1)} \otimes \cdots \otimes h_{i}^{\left(m_{i}\right)}$.

We define an action of $\operatorname{End}\left(F_{n}\right)$ on $H^{\otimes n}$ as follows.
(1) Let $\varphi: F_{n} \rightarrow F_{n}$ be an endomorphism. $\varphi\left(x_{i}\right)=w_{i}$.
(2) Define $\varphi \cdot h_{1} \otimes \cdots \otimes h_{n}$ as follows. If x_{i} appears m_{i} times in all of the image words w_{1}, \ldots, w_{n}, consider $\Delta^{m_{i}}\left(h_{i}\right)=h_{i}^{(1)} \otimes \cdots \otimes h_{i}^{\left(m_{i}\right)}$.
(3) Then use $\left(w_{1}, \ldots, w_{n}\right)$ as a template, substituting the factors of $\Delta^{m_{i}}\left(h_{i}\right)$ for the occurrences of x_{i}, applying S in the cases where x_{i} is inverted.

We define an action of $\operatorname{End}\left(F_{n}\right)$ on $H^{\otimes n}$ as follows.
(1) Let $\varphi: F_{n} \rightarrow F_{n}$ be an endomorphism. $\varphi\left(x_{i}\right)=w_{i}$.
(2) Define $\varphi \cdot h_{1} \otimes \cdots \otimes h_{n}$ as follows. If x_{i} appears m_{i} times in all of the image words w_{1}, \ldots, w_{n}, consider $\Delta^{m_{i}}\left(h_{i}\right)=h_{i}^{(1)} \otimes \cdots \otimes h_{i}^{\left(m_{i}\right)}$.
(3) Then use $\left(w_{1}, \ldots, w_{n}\right)$ as a template, substituting the factors of $\Delta^{m_{i}}\left(h_{i}\right)$ for the occurrences of x_{i}, applying S in the cases where x_{i} is inverted.
(c) For example, if $\eta: F_{2} \rightarrow F_{2}$ is defined by $x_{1} \mapsto x_{2}^{-1} x_{1}, x_{2} \mapsto x_{2}^{-1}$, then the action of η on $H^{\otimes 2}$ looks like:

Puzzle: Show $\left(\sigma_{12} \eta\right)^{3}=$ id using graphical calculus.
In order to show that $\operatorname{Aut}\left(F_{n}\right)$ acts in a well-defined way on $H^{\otimes n}$, one could take a presentation for $\operatorname{Aut}\left(F_{n}\right)$ and verify that all of the relations are satisfied via complex but fun graphical calculus arguments. There is also a more categorical way of doing it.

Definition

The Hopf algebra H acts on $H^{\otimes n}$ via conjugation. That is, suppose $h \in H$ and $\Delta^{2 n}(h)=h_{(1)} \otimes h_{(2)} \otimes \cdots \otimes h_{(2 n-1)} \otimes h_{(2 n)}$, using Sweedler notation.
Then define

$$
h \star\left(h_{1} \otimes \cdots \otimes h_{n}\right)=h_{(1)} h_{1} S\left(h_{(2)}\right) \otimes \cdots \otimes h_{(2 n-1)} h_{n} S\left(h_{(2 n)}\right) .
$$

Let $\overline{H^{\otimes n}}$ be the quotient of $H^{\otimes n}$ by the subspace spanned by elements of the form

$$
(h-\varepsilon(h) \cdot 1) \star\left(h_{1} \otimes \cdots \otimes h_{n}\right)
$$

i.e., this is the maximal quotient of $H^{\otimes n}$ where the conjugation action of H factors through the counit.

- Later on in the talk, the group

$$
H^{2 n-3}\left(\operatorname{Out}\left(F_{n}\right), \overline{T(V)^{\otimes n}}\right)
$$

will make an appearance, where $\operatorname{Out}\left(F_{n}\right)$ will act on $\overline{T(V)^{\otimes n}}$ with $T(V)$ being the tensor (Hopf) algebra generated by V.

- Later on in the talk, the group

$$
H^{2 n-3}\left(\operatorname{Out}\left(F_{n}\right), \overline{T(V)^{\otimes n}}\right)
$$

will make an appearance, where $\operatorname{Out}\left(F_{n}\right)$ will act on $\overline{T(V)^{\otimes n}}$ with $T(V)$ being the tensor (Hopf) algebra generated by V.

- Now you know how the action is defined, and the appropriate sense of suspense has been instilled!

Main course: The Johnson Homomorphism and its cokernel

(1) $\operatorname{Mod}(g, 1)$ is the mapping class group of a genus g surface with 1 boundary component.

Main course: The Johnson Homomorphism and its cokernel

(1) $\operatorname{Mod}(g, 1)$ is the mapping class group of a genus g surface with 1 boundary component.
(2) $\pi=\pi_{1}\left(\Sigma_{g, 1}\right)$ is the fundamental group.

Main course: The Johnson Homomorphism and its cokernel

(1) $\operatorname{Mod}(g, 1)$ is the mapping class group of a genus g surface with 1 boundary component.
(2) $\pi=\pi_{1}\left(\Sigma_{g, 1}\right)$ is the fundamental group.
(3) Let $\pi(k)$ be the k th term of the lower central series: $\pi(1)=\pi$ and $\pi(k+1)=[\pi, \pi(k)]$.

Main course: The Johnson Homomorphism and its cokernel

(1) $\operatorname{Mod}(g, 1)$ is the mapping class group of a genus g surface with 1 boundary component.
(2) $\pi=\pi_{1}\left(\Sigma_{g, 1}\right)$ is the fundamental group.
(3) Let $\pi(k)$ be the k th term of the lower central series: $\pi(1)=\pi$ and $\pi(k+1)=[\pi, \pi(k)]$.
(9) The Dehn-Nielsen map $\operatorname{Mod}(g, 1) \rightarrow \operatorname{Aut}(\pi)$ induces a map $\mathrm{DN}_{k}: \operatorname{Mod}(g, 1) \rightarrow \operatorname{Aut}(\pi / \pi(k))$. The Johnson filtration

$$
\operatorname{Mod}(g, 1)=\rrbracket_{0} \supseteq \rrbracket_{1} \supseteq J_{2} \supseteq \cdots
$$

is defined by $\mathbb{J}_{k}=\operatorname{kerDN}{ }_{k}$.

Main course: The Johnson Homomorphism and its cokernel

(1) $\operatorname{Mod}(g, 1)$ is the mapping class group of a genus g surface with 1 boundary component.
(2) $\pi=\pi_{1}\left(\Sigma_{g, 1}\right)$ is the fundamental group.
(3) Let $\pi(k)$ be the k th term of the lower central series: $\pi(1)=\pi$ and $\pi(k+1)=[\pi, \pi(k)]$.
(9) The Dehn-Nielsen map $\operatorname{Mod}(g, 1) \rightarrow \operatorname{Aut}(\pi)$ induces a map $\mathrm{DN}_{k}: \operatorname{Mod}(g, 1) \rightarrow \operatorname{Aut}(\pi / \pi(k))$. The Johnson filtration

$$
\operatorname{Mod}(g, 1)=J_{0} \supseteq \mathbb{I}_{1} \supseteq \mathbb{J}_{2} \supseteq \cdots
$$

is defined by $\mathbb{J}_{k}=\operatorname{ker} \mathrm{DN}_{k}$.
(5) So \rrbracket_{1} is the Torelli group.

Let $J_{k}=J_{k} / J_{k+1} \otimes \mathbb{k}$. Then $J=\bigoplus_{k \geq 1} J_{k}$ is a Lie algebra and an SP-module.

Question

What is the Lie algebra and SP-module structure of J ?

The classical Johnson homomorphism

(1) Let $V=H_{1}\left(\Sigma_{g, 1} ; \mathbb{k}\right)$.

The classical Johnson homomorphism

(1) Let $V=H_{1}\left(\Sigma_{g, 1} ; \mathbb{k}\right)$.
(2) Let $\mathrm{L}(\mathrm{V})=\oplus_{\mathrm{k} \geq 0} \mathrm{~L}_{\mathrm{k}}(\mathrm{V})$ be the free Lie algebra generated by V.

The classical Johnson homomorphism

(1) Let $V=H_{1}\left(\Sigma_{g, 1} ; \mathbb{k}\right)$.
(2) Let $\mathrm{L}(\mathrm{V})=\oplus_{\mathrm{k} \geq 0} \mathrm{~L}_{\mathrm{k}}(\mathrm{V})$ be the free Lie algebra generated by V.
(3) $\pi(k) / \pi(k+1) \otimes \mathbb{k} \cong \mathrm{L}_{\mathrm{k}}(\mathrm{V})$

The classical Johnson homomorphism

(1) Let $V=H_{1}\left(\Sigma_{g, 1} ; \mathbb{k}\right)$.
(2) Let $\mathrm{L}(\mathrm{V})=\oplus_{\mathrm{k} \geq 0} \mathrm{~L}_{\mathrm{k}}(\mathrm{V})$ be the free Lie algebra generated by V .
(3) $\pi(k) / \pi(k+1) \otimes \mathbb{k} \cong L_{k}(V)$
(9) Let $\varphi \in J_{1} \subset \operatorname{Aut}(\pi)$, and let \mathscr{B} be a standard symplectic basis for V. Then for every $b \in \mathscr{B}, \varphi(b)=b \alpha_{b}$ for some $\alpha_{b} \in \pi(2)$. So we can project α_{b} to lie in $\mathrm{L}_{2}(\mathrm{~V}) \cong \Lambda^{2} \vee$. Then

$$
\left(b \mapsto \alpha_{b}\right) \in \operatorname{Hom}\left(V, \bigwedge^{2} V\right) \cong V^{*} \otimes \bigwedge^{2} V
$$

The classical Johnson homomorphism

(1) Let $V=H_{1}\left(\Sigma_{g, 1} ; \mathbb{k}\right)$.
(2) Let $\mathrm{L}(\mathrm{V})=\oplus_{\mathrm{k} \geq 0} \mathrm{~L}_{\mathrm{k}}(\mathrm{V})$ be the free Lie algebra generated by V .
(3) $\pi(k) / \pi(k+1) \otimes \mathbb{k} \cong L_{k}(\mathrm{~V})$
(9) Let $\varphi \in J_{1} \subset \operatorname{Aut}(\pi)$, and let \mathscr{B} be a standard symplectic basis for V. Then for every $b \in \mathscr{B}, \varphi(b)=b \alpha_{b}$ for some $\alpha_{b} \in \pi(2)$. So we can project α_{b} to lie in $\mathrm{L}_{2}(\mathrm{~V}) \cong \Lambda^{2} \mathrm{~V}$. Then

$$
\left(b \mapsto \alpha_{b}\right) \in \operatorname{Hom}\left(V, \bigwedge^{2} V\right) \cong V^{*} \otimes \bigwedge^{2} V
$$

(5) V is symplectic, so there is a canonical isomorphism $V \cong V^{*}$. It turns out that im τ is contained in the subset of $V \otimes \Lambda^{2} V$ spanned by elements $a \otimes(b \wedge c)+c \otimes(a \wedge b)+b \otimes(c \wedge a)$, which is a copy of $\Lambda^{3} V \subset V \otimes \Lambda^{2} V$. This gives rise to the classical Johnson homomorphism.

$$
\tau_{1}: J_{1} \rightarrow \bigwedge^{3} V
$$

The Higher Johnson homomorphisms

- By the same procedure, one defines the higher order Johnson homomorphism

$$
\tau_{k}: J_{k} \rightarrow V \otimes L_{k+1}(V)
$$

The Higher Johnson homomorphisms

- By the same procedure, one defines the higher order Johnson homomorphism

$$
\tau_{k}: J_{k} \rightarrow V \otimes L_{k+1}(V)
$$

Theorem

$\tau_{k}:\left(\mathbb{I}_{k} / \mathbb{I}_{k+1}\right) \otimes \mathbb{k} \rightarrow V \otimes L_{k+1}(V)$ is injective.

The Higher Johnson homomorphisms

- By the same procedure, one defines the higher order Johnson homomorphism

$$
\tau_{k}: J_{k} \rightarrow V \otimes L_{k+1}(V)
$$

Theorem

$\tau_{k}:\left(\mathbb{J}_{k} / \mathbb{J}_{k+1}\right) \otimes \mathbb{k} \rightarrow V \otimes L_{k+1}(V)$ is injective.

- Note that $\oplus_{k} V^{*} \otimes \mathrm{~L}_{\mathrm{k}+1}(\mathrm{~V}) \cong \operatorname{Der}(\mathrm{L}(\mathrm{V}))$ and so τ has a Lie algebra as a target, and indeed τ is a Lie algebra homomorphism.

The Higher Johnson homomorphisms

- By the same procedure, one defines the higher order Johnson homomorphism

$$
\tau_{k}: \mathbb{J}_{k} \rightarrow V \otimes L_{k+1}(V)
$$

Theorem

$\tau_{k}:\left(\mathbb{J}_{k} / \mathbb{J}_{k+1}\right) \otimes \mathbb{k} \rightarrow V \otimes L_{k+1}(V)$ is injective.

- Note that $\oplus_{k} V^{*} \otimes \mathrm{~L}_{\mathrm{k}+1}(\mathrm{~V}) \cong \operatorname{Der}(\mathrm{L}(\mathrm{V}))$ and so τ has a Lie algebra as a target, and indeed τ is a Lie algebra homomorphism.

Theorem (Hain 1997)

$\operatorname{im}(\tau)$ is the Lie algebra generated by the image of elements in degree 1. l.e. by $\Lambda^{3}(V)$.

- Define $D_{k}(V)$ as the kernel of the bracketing map:

$$
0 \rightarrow \mathrm{D}_{k}(V) \rightarrow V \otimes \mathrm{~L}_{\mathrm{k}+1}(\mathrm{~V}) \rightarrow \mathrm{L}_{\mathrm{k}+2}(\mathrm{~V}) \rightarrow 0
$$

- Define $\mathrm{D}_{k}(V)$ as the kernel of the bracketing map:

$$
0 \rightarrow \mathrm{D}_{k}(V) \rightarrow V \otimes \mathrm{~L}_{\mathrm{k}+1}(\mathrm{~V}) \rightarrow \mathrm{L}_{\mathrm{k}+2}(\mathrm{~V}) \rightarrow 0
$$

- $\operatorname{im}\left(\tau_{k}\right) \subset \mathrm{D}_{k}(V) .($ Morita 1993 $)$
- Define $D_{k}(V)$ as the kernel of the bracketing map:

$$
0 \rightarrow \mathrm{D}_{k}(V) \rightarrow V \otimes \mathrm{~L}_{\mathrm{k}+1}(\mathrm{~V}) \rightarrow \mathrm{L}_{\mathrm{k}+2}(\mathrm{~V}) \rightarrow 0
$$

- $\operatorname{im}\left(\tau_{k}\right) \subset \mathrm{D}_{k}(V)$. (Morita 1993)
- The modules $\mathrm{D}_{k}(V)$ are "easy" to understand. So to study J_{k}, we can consider the Johnson cokernel

$$
\mathrm{C}_{k}=\mathrm{D}_{k}(V) / \operatorname{im}\left(\tau_{k}\right)
$$

- Define $\mathrm{D}_{k}(V)$ as the kernel of the bracketing map:

$$
0 \rightarrow \mathrm{D}_{k}(V) \rightarrow V \otimes \mathrm{~L}_{\mathrm{k}+1}(\mathrm{~V}) \rightarrow \mathrm{L}_{\mathrm{k}+2}(\mathrm{~V}) \rightarrow 0
$$

- $\operatorname{im}\left(\tau_{k}\right) \subset \mathrm{D}_{k}(V)$. (Morita 1993)
- The modules $\mathrm{D}_{k}(V)$ are "easy" to understand. So to study J_{k}, we can consider the Johnson cokernel

$$
\mathrm{C}_{k}=\mathrm{D}_{k}(V) / \operatorname{im}\left(\tau_{k}\right)
$$

- Another source of interest in the cokernel C_{k} is that Matsumoto and Nakamura showed there exist Galois obstructions in C_{k} related to the absolute Galois group $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. In particular, Deligne's motivic conjecture implies that the degree k part of the free graded Lie algebra $\mathrm{L}\left(\sigma_{3}, \sigma_{5}, \sigma_{7}, \cdots\right)$ on odd generators embeds in $\mathrm{C}_{2 k}$ (as a trivial SP-module).

Known classes in C

- $\forall k \geq 1,[2 k+1]_{\mathrm{SP}} \cong S^{2 k+1}(V) \subset \mathrm{C}_{2 k+1}$. (Morita 1993)

Known classes in C

- $\forall k \geq 1,[2 k+1]_{\mathrm{SP}} \cong S^{2 k+1}(V) \subset C_{2 k+1}$. (Morita 1993)
- $\forall k \geq 1,\left[1^{4 k+1}\right]_{\mathrm{SP}} \subset C_{4 k+1}$. (Enomoto-Satoh 2011)

Known classes in C

- $\forall k \geq 1,[2 k+1]_{S P} \cong S^{2 k+1}(V) \subset C_{2 k+1}$. (Morita 1993)
- $\forall k \geq 1,\left[1^{4 k+1}\right]_{\mathrm{SP}} \subset C_{4 k+1}$. (Enomoto-Satoh 2011)
- Galois obstructions. $[0]_{\mathrm{SP}} \subset \mathrm{C}_{6}, \ldots$. (Matsumoto, Nakamura late 90 's)

Known classes in C

- $\forall k \geq 1,[2 k+1]_{S P} \cong S^{2 k+1}(V) \subset C_{2 k+1}$. (Morita 1993)
- $\forall k \geq 1,\left[1^{4 k+1}\right]_{\mathrm{SP}} \subset C_{4 k+1}$. (Enomoto-Satoh 2011)
- Galois obstructions. $[0]_{S P} \subset C_{6}, \ldots$. (Matsumoto, Nakamura late 90 's)
- Let \mathscr{M}_{w} be the space of all classical Modular forms of weight w, and let \mathscr{S}_{w} be the space of cusp forms.

Known classes in C

- $\forall k \geq 1,[2 k+1]_{S P} \cong S^{2 k+1}(V) \subset C_{2 k+1}$. (Morita 1993)
- $\forall k \geq 1,\left[1^{4 k+1}\right]_{\mathrm{SP}} \subset C_{4 k+1}$. (Enomoto-Satoh 2011)
- Galois obstructions. $[0]_{\mathrm{SP}} \subset \mathrm{C}_{6}, \ldots$. (Matsumoto, Nakamura late 90 's)
- Let \mathscr{M}_{w} be the space of all classical Modular forms of weight w, and let \mathscr{S}_{w} be the space of cusp forms.

$$
\begin{gathered}
{[2 k, 2 \ell]_{\mathrm{SP}} \otimes \mathscr{S}_{2 k-2 \ell+2} \subset \mathrm{C}_{2 k+2 \ell+2}} \\
{[2 k+1,2 \ell+1]_{\mathrm{SP}} \otimes \mathscr{M}_{2 k-2 \ell+2} \subset \mathrm{C}_{2 k+2 \ell+4}}
\end{gathered}
$$

(C-Kassabov-Vogtmann 2013)

Low order calculations (Morita-Sakasai-Suzuki 2013)

$$
\begin{aligned}
& \mathrm{C}_{1}=\mathrm{C}_{2}=0 \\
& \mathrm{C}_{3}=[3]_{\mathrm{SP}} \\
& \mathrm{C}_{4}=\left[21^{2}\right]_{\mathrm{SP}} \oplus[2]_{\mathrm{SP}} \\
& \mathrm{C}_{5}=[5]_{\mathrm{SP}} \oplus[32]_{\mathrm{SP}} \oplus\left[2^{2} 1\right]_{\mathrm{SP}} \oplus\left[1^{5}\right]_{\mathrm{SP}} \oplus 2[21]_{\mathrm{SP}} \oplus 2\left[1^{3}\right]_{\mathrm{SP}} \oplus 2[1]_{\mathrm{SP}} \\
& \mathrm{C}_{6}= \\
& 2\left[41^{2}\right]_{\mathrm{SP}} \oplus\left[3^{2}\right]_{\mathrm{SP}} \oplus[321]_{\mathrm{SP}} \oplus\left[33^{1}\right]_{\mathrm{SP}} \oplus\left[2^{2} 1^{2}\right]_{\mathrm{SP}} \oplus 2[4]_{\mathrm{SP}} \oplus 2[31]_{\mathrm{SP}} \oplus \\
& {[31]_{\mathrm{SP}} \oplus 3\left[2^{2}\right]_{\mathrm{SP}} \oplus 3\left[21^{2}\right]_{\mathrm{SP}} \oplus 2\left[^{4}\right]_{\mathrm{SP}} \oplus[2]_{\mathrm{SP}} \oplus 5\left[1^{2}\right]_{\mathrm{SP}} \oplus 2[0]_{\mathrm{SP}} \oplus[0]_{\mathrm{SP}}}
\end{aligned}
$$

Red classes are part of the families due to Morita, Matsumoto-Nakamura, Enomoto-Satoh, and CKV13.

New obstructions

(1) Let $\Phi_{i j}: V^{\otimes n} \rightarrow V^{\otimes(n-2)}$ be the contraction of the i th and j th factors by the symplectic form.

New obstructions

(1) Let $\Phi_{i j}: V^{\otimes n} \rightarrow V^{\otimes(n-2)}$ be the contraction of the i th and j th factors by the symplectic form.
(2) Let $V^{\langle n\rangle} \subset V^{\otimes n}$ be the intersection of the kernels of all $\Phi_{i j}$.

New obstructions

(1) Let $\Phi_{i j}: V^{\otimes n} \rightarrow V^{\otimes(n-2)}$ be the contraction of the i th and j th factors by the symplectic form.
(2) Let $V^{\langle n\rangle} \subset V^{\otimes n}$ be the intersection of the kernels of all $\Phi_{i j}$.
(3) The dihedral group $D_{2 n}$ acts on $V^{\otimes n}$ and $V^{\langle n\rangle}$ by visualizing the tensor factors as lying on the vertices of a polygon. Reflection is twisted by the sign $(-1)^{n+1}$.

New obstructions

(1) Let $\Phi_{i j}: V^{\otimes n} \rightarrow V^{\otimes(n-2)}$ be the contraction of the i th and j th factors by the symplectic form.
(2) Let $V^{\langle n\rangle} \subset V^{\otimes n}$ be the intersection of the kernels of all $\Phi_{i j}$.
(3) The dihedral group $D_{2 n}$ acts on $V^{\otimes n}$ and $V^{\langle n\rangle}$ by visualizing the tensor factors as lying on the vertices of a polygon. Reflection is twisted by the sign $(-1)^{n+1}$.

Theorem (C- 2013)

The coinvariants $V_{D_{2 k}}^{\langle k\rangle}$ embed in C_{k}.

$$
\begin{aligned}
& \mathrm{C}_{1}=\mathrm{C}_{2}=0 \\
& \mathrm{C}_{3}=[3]_{\mathrm{SP}} \\
& \mathrm{C}_{4}=\left[21^{2}\right]_{\mathrm{SP}} \oplus[2]_{\mathrm{SP}} \\
& \mathrm{C}_{5}=[5]_{\mathrm{SP}} \oplus[32]_{\mathrm{SP}} \oplus\left[2^{2} 1\right]_{\mathrm{SP}} \oplus\left[1^{5}\right]_{\mathrm{sP}} \oplus 2[21]_{\mathrm{SP}} \oplus 2\left[1^{3}\right]_{\mathrm{SP}} \oplus 2[1]_{\mathrm{SP}} \\
& \mathrm{C}_{6}=2\left[44^{2}\right]_{\mathrm{SP}} \oplus\left[3^{2}\right]_{\mathrm{SP}} \oplus[321]_{\mathrm{SP}} \oplus\left[31^{3}\right]_{\mathrm{SP}} \oplus\left[2^{2} 1^{2}\right]_{\mathrm{SP}} \oplus 2[4]_{\mathrm{SP}} \oplus \\
& 3[31]_{\mathrm{SP}} \oplus 3\left[2^{2}\right]_{\mathrm{SP}} \oplus 3\left[21^{2}\right]_{\mathrm{SP}} \oplus 2\left[1^{4}\right]_{\mathrm{SP}} \oplus[2]_{\mathrm{SP}} \oplus 5\left[^{2}\right]_{\mathrm{SP}} \oplus 3[0]_{\mathrm{SP}}
\end{aligned}
$$

Conjecture

The part of C_{k} with partitions of size k is isomorphic to $V_{D_{2 k}}^{\langle k\rangle}$.

Theorem (C-Kassabov 2014))

There is a $\operatorname{map} \mathrm{C} \rightarrow H^{2 n-3}\left(\operatorname{Out}\left(F_{n}\right) ; \overline{T(V)^{\otimes n}}\right)$ with "large" image. If $H^{2 n-3}\left(\operatorname{Out}\left(F_{n}\right) ; \bar{T}(V)^{\otimes n}\right)=\oplus_{\lambda} m_{\lambda}[\lambda]_{\mathrm{GL}}$, then im Tr contains $\oplus_{\lambda} m_{\lambda}[\lambda]_{\mathrm{SP}}$.

Theorem (C-Kassabov 2014))

There is a $\operatorname{map} \mathrm{C} \rightarrow H^{2 n-3}\left(\operatorname{Out}\left(F_{n}\right) ; \overline{T(V)^{\otimes n}}\right)$ with "large" image. If $H^{2 n-3}\left(\operatorname{Out}\left(F_{n}\right) ; \overline{T(V)^{\otimes n}}\right)=\oplus_{\lambda} m_{\lambda}[\lambda]_{\mathrm{GL}}$, then im Tr contains $\oplus_{\lambda} m_{\lambda}[\lambda]_{\mathrm{SP}}$.

- $n=2: H^{1}\left(\mathrm{GL}_{2}(\mathbb{Z}), \overline{T(V)^{\otimes 2}}\right)$ contains the family

$$
\left[2 k-1,1^{2}\right]_{\mathrm{SP}} \otimes \mathscr{S}_{2 k+2}
$$

and

$$
\left(\left[2 k+1,1^{2}\right]_{\mathrm{SP}} \oplus[2 k, 2,1]_{\mathrm{SP}} \oplus\left[2 k, 1^{3}\right]_{\mathrm{SP}}\right) \otimes \mathscr{M}_{2 k+2}
$$

yielding obstructions in $\mathrm{C}_{2 k+3}$ and $\mathrm{C}_{2 k+5}$.

Theorem (C-Kassabov 2014))

There is a $\operatorname{map} C \rightarrow H^{2 n-3}\left(\operatorname{Out}\left(F_{n}\right) ; \overline{\left.T(V)^{\otimes n}\right)}\right.$ with "large" image. If $H^{2 n-3}\left(\operatorname{Out}\left(F_{n}\right) ; \overline{T(V)^{\otimes n}}\right)=\oplus_{\lambda} m_{\lambda}[\lambda]_{\mathrm{GL}}$, then im Tr contains $\oplus_{\lambda} m_{\lambda}[\lambda]_{\mathrm{SP}}$.

- $n=2: H^{1}\left(\mathrm{GL}_{2}(\mathbb{Z}), \overline{T(V)^{\otimes 2}}\right)$ contains the family

$$
\left[2 k-1,1^{2}\right]_{\mathrm{SP}} \otimes \mathscr{S}_{2 k+2}
$$

and

$$
\left(\left[2 k+1,1^{2}\right]_{\mathrm{SP}} \oplus[2 k, 2,1]_{\mathrm{SP}} \oplus\left[2 k, 1^{3}\right]_{\mathrm{SP}}\right) \otimes \mathscr{M}_{2 k+2}
$$

yielding obstructions in $\mathrm{C}_{2 k+3}$ and $\mathrm{C}_{2 k+5}$.

- Projecting $\overline{T(V)^{\otimes n}} \rightarrow S(V)^{\otimes n}$ recovers the CKV2013 obstructions.

Tree interpretation of $\mathrm{D}(\mathrm{V})$

(1) IHX:

$$
\overbrace{J_{1}}^{J_{3}}=(-1)^{|\sigma|} \underbrace{J_{\sigma(3)}}_{J_{\sigma(1)}}
$$

(2) AS:

The bracket map

Our strategy is to graphically define a map Tr on $\mathrm{D}(V)$ and mod out by enough relations so that it vanishes on iterated commutators of degree 1 elements.

In general, the target of Tr is defined to be the space $C_{1} \mathscr{H}$, spanned by V-labeled trees with some univalent vertices connected by directed edges, modulo IHX, AS and Multilinearity of the trees, and switching edge order giving a sign. We quotient $C_{1} \mathscr{H}$ by the following relations:
(1)

(2)

(Slide)
(3)

(Jellyfish)

Let $\Omega(V)=C_{1} \mathscr{H} /$ Lollipop + Slide + Jellyfish .

Theorem

Tr: $\mathrm{D}(V) \rightarrow \Omega(V)$ vanishes on im (τ), so induces an invariant of the cokernel.

Proof.

(1) Let t be a degree 1 tree.

Let $\Omega(V)=C_{1} \mathscr{H} /$ Lollipop + Slide + Jellyfish .

Theorem

$\operatorname{Tr}: \mathrm{D}(V) \rightarrow \Omega(V)$ vanishes on $\mathrm{im}(\tau)$, so induces an invariant of the cokernel.

Proof.

(1) Let t be a degree 1 tree.
(2) Show $\operatorname{Tr}[t, X]=[t, \operatorname{Tr}(X)]$.

Let $\Omega(V)=C_{1} \mathscr{H} /$ Lollipop + Slide + Jellyfish .

Theorem

$\operatorname{Tr}: \mathrm{D}(V) \rightarrow \Omega(V)$ vanishes on $\mathrm{im}(\tau)$, so induces an invariant of the cokernel.

Proof.

(1) Let t be a degree 1 tree.
(2) Show $\operatorname{Tr}[t, X]=[t, \operatorname{Tr}(X)]$.
(3) Done by induction.

$\operatorname{Tr}[t, X]=[t, \operatorname{Tr}(X)]$

The terms of the form

are zero by the Lollipop relation.

via the Slide relations. Terms of the form

via the Jellyfish relation.

are part of $[t, \operatorname{Tr}(X)]$. Thus we
have shown that $\operatorname{Tr}([t, X])=[t, \operatorname{Tr}(X)]$.

Now break up $\Omega(V)$ into graded pieces:

$$
\Omega(V)=\bigoplus_{r, s} \Omega_{r, s}(V)
$$

where r is the rank of the graph (or the number of external edges) and s is the number of V-labeled hairs.
(1) $\Omega_{1, s}(V) \cong V_{D_{2 s}}^{\otimes s}$. This gives the Enomoto-Satoh trace.

Now break up $\Omega(V)$ into graded pieces:

$$
\Omega(V)=\bigoplus_{r, s} \Omega_{r, s}(V)
$$

where r is the rank of the graph (or the number of external edges) and s is the number of V-labeled hairs.
(1) $\Omega_{1, s}(V) \cong V_{D_{2 s}}^{\otimes s}$. This gives the Enomoto-Satoh trace.
(2) Let $\Omega_{r, s}\langle V\rangle \subset \Omega_{r, s}(V)$ be spanned by graphs with labels in $V^{\langle s\rangle}$.

Now break up $\Omega(V)$ into graded pieces:

$$
\Omega(V)=\bigoplus_{r, s} \Omega_{r, s}(V)
$$

where r is the rank of the graph (or the number of external edges) and s is the number of V-labeled hairs.
(1) $\Omega_{1, s}(V) \cong V_{D_{2 s}}^{\otimes s}$. This gives the Enomoto-Satoh trace.
(2) Let $\Omega_{r, s}\langle V\rangle \subset \Omega_{r, s}(V)$ be spanned by graphs with labels in $V^{\langle s\rangle}$.
(3) Theorem: Tr is onto $\Omega_{r, s}\langle V\rangle$, which follows from C-Kassabov-Vogtmann 2013.

Now break up $\Omega(V)$ into graded pieces:

$$
\Omega(V)=\bigoplus_{r, s} \Omega_{r, s}(V)
$$

where r is the rank of the graph (or the number of external edges) and s is the number of V-labeled hairs.
(1) $\Omega_{1, s}(V) \cong V_{D_{2 s}}^{\otimes s}$. This gives the Enomoto-Satoh trace.
(2) Let $\Omega_{r, s}\langle V\rangle \subset \Omega_{r, s}(V)$ be spanned by graphs with labels in $V^{\langle s\rangle}$.
(3) Theorem: Tr is onto $\Omega_{r, s}\langle V\rangle$, which follows from C-Kassabov-Vogtmann 2013.
(9) If $r \geq 2$ then $\oplus_{s \geq 0} \Omega_{r, s}(V) \rightarrow H^{2 r-3}\left(\operatorname{Out}\left(F_{r}\right), \overline{T(V)^{\otimes r}}\right)$. (C-Kassabov 2014)

Questions

(1) Does $V_{D_{2 n}}^{\langle n\rangle}$ equal the partition size n part of C_{n} ?

Questions

(1) Does $V_{D_{2 n}}^{\langle n\rangle}$ equal the partition size n part of C_{n} ?
(2) Calculate $H^{2 r-3}\left(\operatorname{Out}\left(F_{r}\right), \overline{\left.T(V)^{\otimes r}\right)}\right.$ or $H^{2 r-3}\left(\operatorname{Out}\left(F_{r}\right), S(V)^{\otimes r}\right)$! We almost have the $r=2$ case solved.

Questions

(1) Does $V_{D_{2 n}}^{\langle n\rangle}$ equal the partition size n part of C_{n} ?
(2) Calculate $H^{2 r-3}\left(\operatorname{Out}\left(F_{r}\right), \overline{\left.T(V)^{\otimes r}\right)}\right.$ or $H^{2 r-3}\left(\operatorname{Out}\left(F_{r}\right), S(V)^{\otimes r}\right)$! We almost have the $r=2$ case solved.
(3) Are the Galois obstructions related to the Morita classes in $\mu_{k} \in H^{4 n}\left(\operatorname{Out}\left(F_{2 n+2}\right) ; \mathbb{Q}\right)$? Both first appear in degree 6.

