Grope concordance and a conjecture of Levine

Jim Conant, Rob Schneiderman, Peter Teichner

September 23, 2010

D A Geometric Filtration of Classical Link Concordance

- 2 From \mathcal{T}_n to D_n and D'_n .
- 3 Proving the Levine Conjecture
- 4 Discrete Morse Theory
- 5 The Nitty-Gritty

Motivating Question

A grope of class 4.

Question

Under what conditions do the components of a link in the 3-sphere bound class n gropes disjointly embedded in the 4-ball?

• The Cochran-Orr-Teichner (2003) filtration of the knot concordance group gives information on which <u>knots</u> can bound gropes of <u>height</u> *n* in the 4-ball.

- The Cochran-Orr-Teichner (2003) filtration of the knot concordance group gives information on which <u>knots</u> can bound gropes of <u>height</u> *n* in the 4-ball.
- Conant and Teichner (2004) used work of Habiro to show that a <u>knot</u> cobounds a class k capped grope with the unknot in S^3 if and only if all finite type invariants vanish up to degree n-1.

- The Cochran-Orr-Teichner (2003) filtration of the knot concordance group gives information on which <u>knots</u> can bound gropes of <u>height</u> *n* in the 4-ball.
- Conant and Teichner (2004) used work of Habiro to show that a knot cobounds a class k capped grope with the unknot in S^3 if and only if all finite type invariants vanish up to degree n-1.
- Conant-Schneiderman-Teichner (2007) showed that the Kontsevich integral rationally classifies *string link* grope cobordism in <u>three-dimensions.</u>

- The Cochran-Orr-Teichner (2003) filtration of the knot concordance group gives information on which <u>knots</u> can bound gropes of <u>height</u> *n* in the 4-ball.
- Conant and Teichner (2004) used work of Habiro to show that a knot cobounds a class k capped grope with the unknot in S^3 if and only if all finite type invariants vanish up to degree n-1.
- Conant-Schneiderman-Teichner (2007) showed that the Kontsevich integral rationally classifies *string link* grope cobordism in <u>three-dimensions.</u>
- Conant-Teichner (2004) and Schneiderman (2005) showed that a <u>knot</u> bounds a grope of arbitrary class into the 4-ball provided the Arf invariant vanishes. Schneiderman gave an explicit geometric construction!

Grope concordance filtration (by class) of the set of framed links with m components \mathbb{L} :

$$\dots \subseteq \mathbb{G}_3 \subseteq \mathbb{G}_2 \subseteq \mathbb{G}_1 \subseteq \mathbb{G}_0 \subseteq \mathbb{L}$$

- $\mathbb{G}_n = \mathbb{G}_n(m)$ is the set of framed links that bound class (n+1) framed gropes disjointly embedded in B^4 .
- \mathbb{G}_0 is the set of evenly framed links.

Grope concordance filtration (by class) of the set of framed links with m components \mathbb{L} :

$$\dots \subseteq \mathbb{G}_3 \subseteq \mathbb{G}_2 \subseteq \mathbb{G}_1 \subseteq \mathbb{G}_0 \subseteq \mathbb{L}$$

- $\mathbb{G}_n = \mathbb{G}_n(m)$ is the set of framed links that bound class (n+1) framed gropes disjointly embedded in B^4 .
- \mathbb{G}_0 is the set of evenly framed links.
- The associated graded $G_n = G_n(m)$ is the quotient of \mathbb{G}_n modulo grope concordance of class n+2.

Let $\mathscr{T} = \mathscr{T}(m)$ be the free abelian group on oriented unitrivalent trees with leaves labeled by $\{1, \ldots, m\}$, modulo the antisymmetry (AS) and Jacobi (IHX) relations.

 ${\mathscr T}$ inherits a grading by the number of trivalent vertices.

A construction known to at least Bing, Cochran and Habiro leads to a *realization map*

$$R_n: \mathscr{T}_n \to \mathsf{G}_n$$

which we prove is well-defined and surjective.

A construction known to at least Bing, Cochran and Habiro leads to a *realization map*

$$R_n: \mathscr{T}_n \to \mathsf{G}_n$$

which we prove is well-defined and surjective.

• The IHX relation in the domain \mathscr{T}_n corresponds to a geometric IHX relation on embedded gropes in 4-space.

• Let $V = \mathbb{Z}^m$.

э

- Let $V = \mathbb{Z}^m$.
- $L_k(V)$ is the degree k part of the free Lie algebra on V.

- Let $V = \mathbb{Z}^m$.
- $L_k(V)$ is the degree k part of the free Lie algebra on V.
 - [X,X] = 0[Z,[X,Y]] + [Y,[Z,X]] + [X,[Y,Z]] = 0

- Let $V = \mathbb{Z}^m$.
- L_k(V) is the degree k part of the free Lie algebra on V.
 [X,X] = 0
 - [Z, [X, Y]] + [Y, [Z, X]] + [X, [Y, Z]] = 0
- $L'_k(V)$ is the degree k part of the free quasi-Lie algebra on V.

- Let $V = \mathbb{Z}^m$.
- $L_k(V)$ is the degree k part of the free Lie algebra on V.
 - **1** [X,X] = 0
 - [Z, [X, Y]] + [Y, [Z, X]] + [X, [Y, Z]] = 0
- L'_k(V) is the degree k part of the free quasi-Lie algebra on V.
 [X,Y]+[Y,X]=0
 [Z,[X,Y]]+[Y,[Z,X]]+[X,[Y,Z]]=0

- Let $V = \mathbb{Z}^m$.
- $L_k(V)$ is the degree k part of the free Lie algebra on V.
 - [X,X] = 0[Z,[X,Y]] + [Y,[Z,X]] + [X,[Y,Z]] = 0
- L'_k(V) is the degree k part of the free quasi-Lie algebra on V.
 [X,Y]+[Y,X] = 0
 [Z,[X,Y]]+[Y,[Z,X]]+[X,[Y,Z]] = 0
- So $2[X,X] = 0 \in L'_{2k}$. But $[X,[Y,Y]] = 0 \in L'_k$ by the Jacobi identity.

- Let $V = \mathbb{Z}^m$.
- $L_k(V)$ is the degree k part of the free Lie algebra on V.
 - (1) [X,X] = 0(2) [Z,[X,Y]] + [Y,[Z,X]] + [X,[Y,Z]] = 0
- L'_k(V) is the degree k part of the free quasi-Lie algebra on V.
 [X,Y]+[Y,X] = 0
 [Z,[X,Y]]+[Y,[Z,X]]+[X,[Y,Z]] = 0
- So $2[X,X] = 0 \in L'_{2k}$. But $[X,[Y,Y]] = 0 \in L'_k$ by the Jacobi identity.
- $0 \to \mathbb{Z}_2 \otimes L_n \to L'_{2n} \to L_{2n} \to 0$ (Levine)

 D_n and D'_n are defined as kernels of bracketing maps:

$$0 \to \mathsf{D}_n \to V \otimes \mathsf{L}_{n+1} \to \mathsf{L}_{n+2} \to 0$$
$$0 \to \mathsf{D}'_n \to V \otimes \mathsf{L}'_{n+1} \to \mathsf{L}'_{n+2} \to 0$$

 D_n is the natural home for μ -invariants. We'll come back to this!

Corollary

The set G_n is a finitely generated abelian group under a well-defined connect-sum operation.

3. 3

Image: Image:

Corollary

The set G_n is a finitely generated abelian group under a well-defined connect-sum operation.

Theorem

Milnor invariants of length $\leq 2n+1$ vanish on G_{2n} and the <u>total Milnor invariant</u> of length 2n+2, μ_{2n} , fits into a commutative triangle of isomorphisms:

Corollary

The set G_n is a finitely generated abelian group under a well-defined connect-sum operation.

Theorem

Milnor invariants of length $\leq 2n+1$ vanish on G_{2n} and the <u>total Milnor invariant</u> of length 2n+2, μ_{2n} , fits into a commutative triangle of isomorphisms:

The proof of this theorem and the ones to follow uses Schneiderman's equivalence between gropes and Whitney towers.

The *reduced* version $\widetilde{\mathscr{T}}_{2n-1}$ of \mathscr{T}_{2n-1} is defined by dividing out the *framing relations* (FR), which are images of homomorphisms

$$\Delta_{2n-1}: \mathbb{Z}/2 \otimes \mathscr{T}_{n-1} \to \mathscr{T}_{2n-1}$$

defined by sending an order n-1 tree t to the sum of trees gotten by doubling the subtree adjacent to each univalent vertex of t.

Theorem

The map R_{4n-1} is an isomorphism, detected by the total Milnor invariant of length 4n+1 and higher-order Sato-Levine invariants.

Conjecture

 $R_{4n+1}: \widetilde{\mathscr{T}}_{4n+1} \rightarrow G_{4n+1}$ is an isomorphism, classified by Milnor invariants of length 4n+3, higher-order Sato-Levine invariants, and higher order Arf invariants.

• Let *L* be a link where all the longitudes lie in Γ_{n+1} , the (n+1)th term of the lower central series of the link group $\Gamma := \pi_1(S^3 \setminus L)$.

- Let *L* be a link where all the longitudes lie in Γ_{n+1} , the (n+1)th term of the lower central series of the link group $\Gamma := \pi_1(S^3 \setminus L)$.
- By Van Kampen's Theorem $\frac{\Gamma_{n+1}}{\Gamma_{n+2}} \cong \frac{F_{n+1}}{F_{n+2}}$ where F = F(m) is the free group on meridians.

- Let *L* be a link where all the longitudes lie in Γ_{n+1} , the (n+1)th term of the lower central series of the link group $\Gamma := \pi_1(S^3 \setminus L)$.
- By Van Kampen's Theorem $\frac{\Gamma_{n+1}}{\Gamma_{n+2}} \cong \frac{F_{n+1}}{F_{n+2}}$ where F = F(m) is the free group on meridians.
- The *i*-th longitude maps to the quotient $\frac{F_{n+1}}{F_{n+2}} \cong L_{n+1}$.

$$\ell_i \mapsto \mu_n^i(L) \in L_{n+1}.$$

- Let *L* be a link where all the longitudes lie in Γ_{n+1} , the (n+1)th term of the lower central series of the link group $\Gamma := \pi_1(S^3 \setminus L)$.
- By Van Kampen's Theorem $\frac{\Gamma_{n+1}}{\Gamma_{n+2}} \cong \frac{F_{n+1}}{F_{n+2}}$ where F = F(m) is the free group on meridians.
- The *i*-th longitude maps to the quotient $\frac{F_{n+1}}{F_{n+2}} \cong L_{n+1}$.

$$\ell_i \mapsto \mu_n^i(L) \in L_{n+1}.$$

 The first non-vanishing Milnor invariant μ_n(L) of order n is defined to be

$$\mu_n(L) := \sum_i X_i \otimes \mu_n^i(L) \in \mathsf{D}_n \subset V \otimes \mathsf{L}_{n+1}$$

Jerry Levine defined a homomorphism

$$\eta' \colon \mathscr{T}_n \to \mathsf{D}'_n.$$

$$\stackrel{i}{\searrow} \stackrel{j}{\longmapsto} X_i \otimes \stackrel{j}{\swarrow} \stackrel{k}{\longleftarrow} l + X_j \otimes \stackrel{k}{\longleftarrow} \stackrel{i}{\longleftarrow} X_k \otimes \stackrel{l}{\longleftarrow} \stackrel{i}{\longleftarrow} j + X_l \otimes \stackrel{i}{\longleftarrow} \stackrel{j}{\longleftarrow} k$$

Levine was studying the group of homology cylinders over a surface with one boundary component.

 $\eta' \colon \mathscr{T}_n \to \mathsf{D}'_n$ is an isomorphism.

э

 $\eta' \colon \mathscr{T}_n \to \mathsf{D}'_n$ is an isomorphism.

() η is easily shown to be an isomorphism after tensoring with \mathbb{Q} .

 $\eta'\colon \mathscr{T}_n\to \mathsf{D}'_n$ is an isomorphism.

\$\emptysel{1}\$ \$\emptysel{1}\$ is easily shown to be an isomorphism after tensoring with \$\mathbb{Q}\$.
2 Levine showed that \$\eta'\$ is onto.

 $\eta'\colon \mathscr{T}_n\to \mathsf{D}'_n$ is an isomorphism.

- **(**) η is easily shown to be an isomorphism after tensoring with \mathbb{Q} .
- 2 Levine showed that η' is onto.
- 3 Levine, and independently, Habiro, showed that η'_n is injective when n is prime and many other special cases.

Lifting to Chain Complexes

Jim Conant, Rob Schneiderman, Peter TiGrope concordance and a conjecture of L September 23, 2010 17 / 30

э

э

Jim Conant, Rob Schneiderman, Peter T(Grope concordance and a conjecture of L September 23, 2010 17 / 30

æ

э

- A 🖓

•
$$0 \to V \otimes \mathbb{L}_{\bullet}(n+1) \to \mathbb{L}_{\bullet}(n+2) \to \overline{\mathbb{L}}_{\bullet}(n+2) \to 0$$

э

•
$$0 \to V \otimes \mathbb{L}_{\bullet}(n+1) \to \mathbb{L}_{\bullet}(n+2) \to \overline{\mathbb{L}}_{\bullet}(n+2) \to 0$$

• $\cdots \to H_1(\mathbb{L}_{\bullet}(n+2)) \to H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \to V \otimes H_0(\mathbb{L}_{\bullet}(n+1)) \to H_0(\mathbb{L}_{\bullet}(n+2) \to 0$

•
$$0 \to V \otimes \mathbb{L}_{\bullet}(n+1) \to \mathbb{L}_{\bullet}(n+2) \to \overline{\mathbb{L}}_{\bullet}(n+2) \to 0$$

$$\sum_{3}^{2} \overline{\mathbf{L}}^{1} = \mathbf{0} \in \overline{\mathbb{L}}_{0}(5)$$

• $\cdots \to H_1(\mathbb{L}_{\bullet}(n+2)) \to H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \to V \otimes H_0(\mathbb{L}_{\bullet}(n+1)) \to H_0(\mathbb{L}_{\bullet}(n+2) \to 0$

0

• $\cdots \to H_1(\mathbb{L}_{\bullet}(n+2)) \to H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \to V \otimes L'_{n+1} \to L'_{n+2} \to 0$

3

•
$$0 \to V \otimes \mathbb{L}_{\bullet}(n+1) \to \mathbb{L}_{\bullet}(n+2) \to \overline{\mathbb{L}}_{\bullet}(n+2) \to 0$$

$$\sum_{3}^{2} \underbrace{1}_{4} = 0 \in \overline{\mathbb{L}}_{0}(5)$$

- $\cdots \to H_1(\mathbb{L}_{\bullet}(n+2)) \to H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \to V \otimes H_0(\mathbb{L}_{\bullet}(n+1)) \to H_0(\mathbb{L}_{\bullet}(n+2) \to 0$
- $\cdots \to H_1(\mathbb{L}_{\bullet}(n+2)) \to H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \to V \otimes L'_{n+1} \to L'_{n+2} \to 0$
- To prove Levine's conjecture, it is sufficient to show

•
$$H_1(\mathbb{L}_{\bullet}(n+2)) = 0$$

• $H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \cong H_0(\mathbb{T}_{\bullet}(n+2))$

•
$$0 \to V \otimes \mathbb{L}_{\bullet}(n+1) \to \mathbb{L}_{\bullet}(n+2) \to \overline{\mathbb{L}}_{\bullet}(n+2) \to 0$$

$$\sum_{3}^{2} \overline{\mathbf{L}}_{4}^{1} = \mathbf{0} \in \overline{\mathbb{L}}_{0}(5)$$

- $\cdots \to H_1(\mathbb{L}_{\bullet}(n+2)) \to H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \to V \otimes H_0(\mathbb{L}_{\bullet}(n+1)) \to H_0(\mathbb{L}_{\bullet}(n+2) \to 0$
- $\cdots \to H_1(\mathbb{L}_{\bullet}(n+2)) \to H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \to V \otimes L'_{n+1} \to L'_{n+2} \to 0$
- To prove Levine's conjecture, it is sufficient to show

•
$$H_1(\mathbb{L}_{\bullet}(n+2)) = 0$$

•
$$H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \cong H_0(\mathbb{T}_{\bullet}(n+2))$$

• Both proofs use the technique of *discrete Morse theory* in the context of abstract chain complexes.

Let R be a commutative ring with unit, and let (C_{\bullet}, ∂) be a chain complex where each C_k is a free R-module, with a fixed basis $\{\mathbf{b}_k^i\}$.

Let R be a commutative ring with unit, and let (C_{\bullet}, ∂) be a chain complex where each C_k is a free R-module, with a fixed basis $\{\mathbf{b}_k^i\}$.

• A vector is a pair of basis elements $(\mathbf{b}_{k-1}^{i}, \mathbf{b}_{k})$ in degrees k-1 and k respectively, such that $\partial(\mathbf{b}_{k}) = r_{i}\mathbf{b}_{k-1}^{i} + \sum_{i \neq j} c_{j}\mathbf{b}_{k-1}^{j}$, where $r_{i} \in R$ is invertible, and the coefficients $c_{i} \in R$ are arbitrary.

Let R be a commutative ring with unit, and let (C_{\bullet}, ∂) be a chain complex where each C_k is a free R-module, with a fixed basis $\{\mathbf{b}_k^i\}$.

- A vector is a pair of basis elements $(\mathbf{b}_{k-1}^{i}, \mathbf{b}_{k})$ in degrees k-1 and k respectively, such that $\partial(\mathbf{b}_{k}) = r_{i}\mathbf{b}_{k-1}^{i} + \sum_{i \neq j} c_{j}\mathbf{b}_{k-1}^{j}$, where $r_{i} \in R$ is invertible, and the coefficients $c_{j} \in R$ are arbitrary.
- A (homological) vector field, Δ, is a collection of vectors (a,b) such that every basis element appears in at most one such vector.

Let R be a commutative ring with unit, and let (C_{\bullet}, ∂) be a chain complex where each C_k is a free R-module, with a fixed basis $\{\mathbf{b}_k^i\}$.

- A vector is a pair of basis elements $(\mathbf{b}_{k-1}^{i}, \mathbf{b}_{k})$ in degrees k-1 and k respectively, such that $\partial(\mathbf{b}_{k}) = r_{i}\mathbf{b}_{k-1}^{i} + \sum_{i \neq j} c_{j}\mathbf{b}_{k-1}^{j}$, where $r_{i} \in R$ is invertible, and the coefficients $c_{j} \in R$ are arbitrary.
- A (homological) vector field, Δ, is a collection of vectors (a,b) such that every basis element appears in at most one such vector.
- I a gradient path is a sequence of basis elements

 $\mathsf{a_1}, \mathsf{b_1}, \mathsf{a_2}, \mathsf{b_2}, \dots, \mathsf{a_m}$

where each $(a_i, b_i) \in \Delta$, and $a_i \neq a_{i-1}$ has nonzero coefficient in ∂b_{i-1} .

Let R be a commutative ring with unit, and let (C_{\bullet}, ∂) be a chain complex where each C_k is a free R-module, with a fixed basis $\{\mathbf{b}_k^i\}$.

- A vector is a pair of basis elements $(\mathbf{b}_{k-1}^{i}, \mathbf{b}_{k})$ in degrees k-1 and k respectively, such that $\partial(\mathbf{b}_{k}) = r_{i}\mathbf{b}_{k-1}^{i} + \sum_{i \neq j} c_{j}\mathbf{b}_{k-1}^{j}$, where $r_{i} \in R$ is invertible, and the coefficients $c_{j} \in R$ are arbitrary.
- A (homological) vector field, Δ, is a collection of vectors (a,b) such that every basis element appears in at most one such vector.
- I a gradient path is a sequence of basis elements

 $\mathsf{a_1}, \mathsf{b_1}, \mathsf{a_2}, \mathsf{b_2}, \dots, \mathsf{a_m}$

where each $(a_i, b_i) \in \Delta$, and $a_i \neq a_{i-1}$ has nonzero coefficient in ∂b_{i-1} .

A vector field is said to be a gradient field if there are no closed gradient paths. A basis element is said to be *critical* if doesn't appear in any vector of the vector field.

Theorem (Kozlov)

The chain complex (C_*, ∂) is quasi-isomorphic to a chain complex $(C_*^{\Delta}, \partial^{\Delta})$, called the Morse complex, with basis in one-to-one correspondence with critical generators.

Key idea: η'_n lifts uniquely to a map $\bar{\eta}_n$.

There is a chain map

$$\mathbb{n} \colon \mathbb{T}_{\bullet}(n+2) \to \overline{\mathbb{L}}_{\bullet+1}(n+2)$$

such that $H_0(\mathbf{n}) = \bar{\eta}$.

A vector field on $\overline{\mathbb{L}}_{\bullet}(n+2)$

Choose basepoints fixed by Aut(t) for every t ∈ T_●(n), at vertices when possible.

A vector field on $\overline{\mathbb{L}}_{\bullet}(n+2)$

Choose basepoints fixed by Aut(t) for every t ∈ T_●(n), at vertices when possible.

 $\bullet\,$ Define Δ by "pushing away from the basepoint."

A vector field on $\overline{\mathbb{L}}_{\bullet}(n+2)$

Choose basepoints fixed by Aut(t) for every t ∈ T_●(n), at vertices when possible.

• Define Δ by "pushing away from the basepoint."

• Here we needed to generalize Kozlov's result to a special non-free case.

Critical Generators in $\overline{\mathbb{L}}_{\bullet}(n+2)$

э

$$cok_{\bullet} = \bigoplus \{ 0 \rightarrow \mathbb{Z}_2 \begin{pmatrix} 1 & & \\ 2 & & \end{pmatrix} \rightarrow \mathbb{Z}_2 \begin{pmatrix} 1 & & \\ 2 & & \end{pmatrix} \rightarrow 0 \}$$

۲

Jim Conant, Rob Schneiderman, Peter TrGrope concordance and a conjecture of L September 23, 2010 26 / 30

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣A⊙

$$cok_{\bullet} = \bigoplus \{ 0 \rightarrow \mathbb{Z}_2 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \rightarrow \mathbb{Z}_2 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \rightarrow \mathbb{Z}_2 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) \rightarrow 0 \}$$

۲

• The kernel is not acyclic, but in degree 0, it represents 0 in homology.

$$\sum_{1}^{1} \longrightarrow 0 \in H_0(\mathbb{T}_{\bullet}(n+2)) \cong \mathscr{T}_n$$

$$cok_{\bullet} = \bigoplus \{ 0 \rightarrow \mathbb{Z}_2 \begin{pmatrix} 1 & & \\ 2 & & \end{pmatrix} \rightarrow \mathbb{Z}_2 \begin{pmatrix} 1 & & \\ 2 & & \end{pmatrix} \rightarrow 0 \}$$

۲

• The kernel is not acyclic, but in degree 0, it represents 0 in homology.

$$\sum_{1}^{1} \longrightarrow 0 \in H_{0}(\mathbb{T}_{\bullet}(n+2)) \cong \mathscr{T}_{n}$$

• Thus $H_0(\mathfrak{n}) \colon H_0(\mathbb{T}_{\bullet}(n+2)) \xrightarrow{\cong} H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \cong \mathsf{D}'_n$

$$cok_{\bullet} = \bigoplus \{ 0 \rightarrow \mathbb{Z}_2 \begin{pmatrix} 1 & & \\ 2 & & \end{pmatrix} \rightarrow \mathbb{Z}_2 \begin{pmatrix} 1 & & \\ 2 & & \end{pmatrix} \rightarrow 0 \}$$

۲

• The kernel is not acyclic, but in degree 0, it represents 0 in homology.

$$\sum_{1}^{1} \longrightarrow 0 \in H_{0}(\mathbb{T}_{\bullet}(n+2)) \cong \mathscr{T}_{n}$$

- Thus $H_0(\mathfrak{n}) \colon H_0(\mathbb{T}_{\bullet}(n+2)) \xrightarrow{\cong} H_1(\overline{\mathbb{L}}_{\bullet}(n+2)) \cong \mathsf{D}'_n$
- The proof is complete!

 To show H₁(L_●(n)) = 0 we construct a vector field Δ = Δ₀ ∪ Δ₁ where Δ_i: L_i → L_{i+1} with no critical vectors in degree 1.

- To show H₁(L_●(n)) = 0 we construct a vector field Δ = Δ₀ ∪ Δ₁ where Δ_i: L_i → L_{i+1} with no critical vectors in degree 1.
- Work first with $\mathbb{Z}[\frac{1}{2}]$ coefficients.

- To show H₁(L_●(n)) = 0 we construct a vector field Δ = Δ₀ ∪ Δ₁ where Δ_i: L_i → L_{i+1} with no critical vectors in degree 1.
- Work first with $\mathbb{Z}[\frac{1}{2}]$ coefficients.
- H₀(L_●(n); Z[¹/₂]) ≅ Z[¹/₂] ⊗ L_n has a well-known basis, called the Hall basis, so our strategy is to define Δ₀(J) to be some nontrivial contraction of J for every non-Hall tree J.

• The resulting vector field has no closed gradient paths in some sense, because the Hall basis algorithm 'works.' The way we rigorously prove it is to show that a natural "Hall order" defined on trees always increases as one moves along a gradient path.

- The resulting vector field has no closed gradient paths in some sense, because the Hall basis algorithm 'works.' The way we rigorously prove it is to show that a natural "Hall order" defined on trees always increases as one moves along a gradient path.
- This is the most one can hope to do for Δ₀, because Hall trees need to survive as a basis for H₀(L_●(n); Z[¹/₂]).

• All the trees in *im*Δ₀ are not critical, so it suffices to define Δ₁ to be nonzero on all the other degree 1 trees.

- All the trees in *im*Δ₀ are not critical, so it suffices to define Δ₁ to be nonzero on all the other degree 1 trees.
- We combinatorially characterize what it means to be Hall₁.

- All the trees in *im*Δ₀ are not critical, so it suffices to define Δ₁ to be nonzero on all the other degree 1 trees.
- We combinatorially characterize what it means to be Hall₁.
- We define Δ_1 for each different type of $Hall_1$ problem as a certain contraction.

 The resulting vector field is again shown to be gradient by arguing that the Hall order increases as one moves along gradient paths. This then proves the Z[¹/₂]-coefficients case.

- The resulting vector field is again shown to be gradient by arguing that the Hall order increases as one moves along gradient paths. This then proves the Z[¹/₂]-coefficients case.
- For Z₂ coefficients the argument is similar, except now we use the fact proven by Levine, that H₀(L_●(n); Z₂) ≅ Z₂ ⊗ L'_n has a basis given by Hall trees plus trees [H, H] where H is Hall.
- The resulting vector field is again shown to be gradient by arguing that the Hall order increases as one moves along gradient paths. This then proves the Z[¹/₂]-coefficients case.
- For Z₂ coefficients the argument is similar, except now we use the fact proven by Levine, that H₀(L_●(n); Z₂) ≅ Z₂ ⊗ L'_n has a basis given by Hall trees plus trees [H, H] where H is Hall.
- The chain complex L_●(n) is not free, so we can't use the universal coefficient theorem, but through some trickery we are still able to conclude that H₁(L_●(n); Z) = 0.