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u know the coordinates x(A7) and y(Ar), then you can
use (4) again (with the definition from one-variable calculus of 4.x and 4y) 10 tell
you (approximately) the values for x(2Ar) and y(2Ar). Indeed, for small Az, these
differ only slightly from xo + flx(A0), y(AD]AL + f (x0. yo) B2 and yo + glx(An),
y(AD]AL + g(xo, yo) At, respectively. Then, you can iterate the preceding to find x

and y att = 3AL, 4AtL, ..., elc.

In any event, once yO

6.4 Generalities
a movie of the xy-plane with the position (x(), y(1)) of the solution to (4)

represented by a moving point in the plane. Then E:o:uwo:_._oiﬁnn- E.x:r
coordinates of the moving point change with time. In particular, you can develop a
sort of heuristic picture by first drawing the (x, y) plane and indicating the regions
2ga%uo.av9n=aa : ikewi he function g. Then, if you are
in a region where, for example, f > 0 and also g > 0, you know that the path of
(x(1), y(r)) moves up and to the right as the movie progresses because both x(r) and
y(t) are increasing where [ > 0and g > 0. Similar analysis tells you the rough
direction of motion for (x(1), y(1)), where f>0andg < 0 (down and to the right),
and where f < 0 and where g > 0or g < 0. This sort of analysis is called phase

plane analysis.

Imagine

6.5 Summary of Phase Plane Analysis

ne analysis for a differential equ
o given functions on the x y-plane.

Here is a summary of phase pla ation of the form in
Equation (4) where f and g are tw

6.5.1 General Strategy

. . g _(x®)
ere is a unique solution v(t) = Av. c Vv 10(4)

o Pick a starting point in the plane; th
0.

that sits at your chosen starting pointatt =
o Think of v(t) as tracing out 2 path (trajectory) in the xy-plane as [ increases. A
goal is to predict the behavior of this path.

e The phase plane analysis described next is designed to help you predict the tra-

jectory.

Here are the six steps for the phase plane analysis:

Draw the curves where fx,y) =0 These are called the x null clines for

reason: When v(¢) lies on one of these null clines, then % = 0. Draw
ind yourself that a trajectory that crosses

ly in the vertical direction at the

E Step 1:

the following
vertical slash marks on the x null clines to rem

such a null cline can only do so if it is moving pure
instant of crossing.
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Step 2: Likewise, draw the c
- s urves where =
s g(x,y) = 0. Th
o QM” Wnsﬂm_..MM H_H._._wﬂ _15 happens to sit on one, then m« = M mncﬂainnwm“”_ﬂ_,{ h._cﬂ
ines to remind yourself that j A -

i ; : ; a trajectory that ci i
e S wo by .._.x_:;sw purely in the horizontal direction at _=qu3_“._=.... Mwﬂwn.ww“hn::: i

ep 3: Labe i i :
e e .”“nvo__.m.._._uﬂms.,n:”na the ua._“_.___ n__.u.am intersect the y null clines. If v(r) is
st v&:.vwﬁ " n ao..m”nuu and 2% vanish. This means that the trajecto
proinbggtel, ga e B ime. se intersection points of x null clines and i
oty quilibrium points. If the system that is described by Equati / ::.:

i e into a steady state, then v(r) will have to a h ¥ E_E.i e
sty pproach one of the equilibrium
Step 4: Label the regi

gions of the xy-plane wh g

e & ere 95 < 0 and where %%
m« " Rm_,a.:m are always separated by x null n_:._an__”u Likewise wmwwwm“ﬂ . o..ﬁZo_n e

¢ 15 positive and negative. . L e
Step 5: Go back and

. put arrows on the vertical hash

o i : marks of the x null cli
o :_ : hngsoa E....Eo_._ across the null cline is up or down. The &“"“_".ez.,u,..qh e
- _.uu ‘m ol . x null cline in the m._w > 0 regions, and down on those parts mwa o
: v Mo_o_.”_.“_“n.ﬂ._mn u....n. =.“ _w ﬂmmgﬂd—urn{&. draw arrows on the :olmo:_nwm_wmm L:Wa

at de clines. arrows are right pointi e
cline in the mm > 0 regions and left pointing on %_o v_usﬂmg_.h m:no._._....w:o vm:u i
Step 6: With the precedin Mo

) ! g completed, the is i
o ot oo e i_.ﬂ " analysis proceeds by observing that if the

(@) % >0and % > 0, the
_ ¢ > 0, then both x(¢) and i ; .
be moving up and to the right on the bw..mw.”_” increasing, so the trajectory must

(b) % > 0and % <0 w
ar , then x(t) is increasi 3 -
moves down and to the right. reasing but y(r) is decreasing so the trajectory

(c) % <Oand mn =0 ;
' , then x(t) is decreasi g ;
tory moves up and to the left. sing and y(r) is increasing, so the trajec-

() % <Oandalso 2 <0
, then x(r) and :
L egnarnpead, iy ) and y(t) are both decreasing, so the trajectory

Note: This sort of analysis i i

. : ysis is not quantitative (it i

P q ive (it is hard to get

b E“ n_.” ”=¢nﬂnﬂ _uoinq?_ tool for analyzing the long-time n<mv_=“uwh M“”_H__.m w_.._

— o s given in (4). However, there now exist good compute! —

i qwcn. trajectories in the xy-plane of solutions to diffi v ot
-ty ifferential equations like

6.6 Phase Plane Analysis for the Epidemic Model

As an example of phase .
P plane analys i +
A = 1075, These : is, consider the example in Equation (2) where
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j i ion (1V) and moves up and to the right :._En:u.. At
y H._M.qu%ﬂm_.m ﬂ”nnwn_._ﬂw ﬂ,w_.mn_.., ME:N R, and then mcﬁ,ncao later, En qs.ﬁns__.._w
enters Region (I1T) moving horizontally n_..w to the right. F_Wom_o:%cum.m ”_n .
trajectory moves down and to the right, but it can never leave Region (! L
all of the hash mark arrows are pointing to this region. Thus, the trajectory

forced to approach ever closer the equilibrium point (2/3,2/3) as time evolves.

Region (IV) and moves up and to the right initially. The

trajectory starts in |
i ”ﬂ.n aum R Mwn____u larger than L, and the trajectory eventually enters Region (1I)

by crossing the R null cline where L = 2(1 — R) moving ,..n_dna_% ﬂw” ““
Region (II), the trajectory moves up and to the left. The trajectory can s
Region (1I) mmﬁni_aﬁggﬁgna%amzﬁﬁw_oaw_ﬂvg_ :.mn
in. Thus, in this case also, the trajectory is forced to approach ever closer 10
equilibrium point (2/3,2/3) as time evolves.

o The values of R and L approach equality as the trajectory
the right in Region (IV). Moreover, the trajectory stays in Reg
proaches ever closer to the equilibrium point (2/3, 2/3).

advances up and to
jon (1V), but ap-

Thus, we see that in the case where a = 1/2 at least, all the preceding .Sn_.__m.“.,ou
have the mw.._..n result at large time: The initial value of R = 0.51 __,_.a L = 0.5 evo é_m
in time toward the equilibrium point where R and L are equal with value 2/3. As
and L are definitely not equal in real life, we can see that the case a =

i ation (1) can be discarded. ,

Eonn_ﬂ“__._ﬂmm__._.._ aﬁ._n un 1/2 behavior is characteristic of all a < _. versions of the
model in Equation (1). Although there are quantitative &m.aa:noﬁﬁs respect r:m h.wn
precise value for R and L of the limiting equilibrium point, the trajectory nonet! " “
approaches an equilibrium point where R = L. Thus, thecasea < 1 in the model i
Equation (1) does not match real-world data.
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On the other hand, the case @ > 1 is very much like that for a = 2, and in
this case, the conclusions in (11) still hold. In particular, in the @ > 1 case, one of
the possibilities comes pretty close to the real-life situation. However, before we pat
ourselves on the back, we should stop to ask whether @ > 1 is a reasonable assumption.
Indeed, this case, where a > |, presents a simplified model for the situation where
right-curling shells are more tolerant of the presence of other right-curling shells than
other left-curling shells. Is this a reasonable assumption? What do you think?

Here are some possible scenarios: Perhaps shells cannot distinguish the curling
direction of their neighbors. Alternately, suppose that shells do detect the curling di-
rection of their neighbors, but are less tolerant of like-curling neighbors rather than
more tolerant. Indeed, suppose that like-curling shells breed only with each other.
Furthermore, suppose that snails come in males and females. (Do they?) Then right-
curling males might fight right-curling males for dominance, but tolerate right-curling
females; and likewise, right-curling females might fight right-curling females and tol-
erate right-curling males. Meanwhile, both ignore left curlers as these do not represent
competition for breeding success, only competition for food. [Here is where a model
suggests directions for field research and experiments. The point is that the question
of whether the constant a in (1) is greater than 1 may, in principle, be verified by field
research.]

5.3 The Lotka-Volterra Equation, a Predator-Prey Model

Austrian biophysicist Alfred Lotka and Italian mathematician Vito Volterra separately
wrote down and analyzed a system of differential equations that model the interaction
of predator and prey species. We give the example of the predator being foxes and the
prey being hares. Let F(t) denote the number of foxes at time ¢, and let H(t) denote
the number of hares. The model assumes that rates of change of F(r) and H(t) obey
the equation

o (a — bH — cF)H,

dt

dF

— =(-d +eH)F, (10)
dt

where a, b, ¢, d, and e are positive constants that we might hope to determine from
field research data.

To help see the significance of these constants to the model, consider first writing
the first line in (10) as

dH

M.HQT.. (an

where @ = a — bH — cF is the net birth-death rate for hares when H is the num-
ber of hares and F is the number of foxes. Notice that when F = 0, so there are no
foxes, then (11) is exactly the logistics equation that we studied previously. Thus, we
can identify a as an intrinsic growth rate of hare in an ideal environment and we can




82 Systems of First-Order Differential Equations Ch.5

identify a/b with the cartying capacity of the environment in the absence of foxes.
Thus, we could, in principle, measure a and b by raising hares in a sufficiently large
enclosure that is fenced to keep all foxes at bay. Meanwhile, if we let F be nonzero,
we see that the term —cFH in(10) models the predatory effects of foxes on the hares.
Note that this effect increases with increasing number of foxes (as W€ might expect)
and also with increasing number of hares (which i8 debatable). We might try to deter-
mine the constant ¢ by measuring the birth versus death rate of hares in a patch of the

In the second line of (10) we can identify the quantity _d +eH asanet birth-
death rate for foxes. Here, we see that when H = 0, the fox B:uno..:.n&w F' =
_4F. with solution F() = F(0)e~%". This decreases t0 sero as ¢ increases which
is expected: without hares, the foxes will starve. (Of course, this assumes that there
is no alternative source of prey. Such an assumption may not be tenable in any given
environment.) The term +eH F in the second line of (10) models the positive effect
of hares on the birth rate of foxes. That is, if hares are present, the foxes eat well and
the birth rate increases, while the death rate decreases. So hares have a positive effect
on the rate of change of F. The measurement of d and e can also be made (perhaps)
by raising foxes in an enclosed environment where there food supply is controlled and
their birth and death rates as a function of food supply are monitored.

To simplify the subsequent story, 1 will now choose the constants a, b, c,d,and
¢ that appear in (10) so that the equations read

dH _ o _H - F)H,

dt

dF

9F o 14 DF, (12)

As in the previous examples, the analysis of these equations for H and F starts with the
drawing of a plane with axis labled H (say the horizontal axis) and F (say the vertical
axis). We next draw the H null clines. From the right side of the first line in (12), we
see that these occur where

H=0 or F=2-H. (13

Mark these H null clines with vertical slash marks to indicate {hat the trajectories Cross
these lines moving vertically.

The next step is to draw the F null clines. From the right-hand side of the second
line of (12), we se€ that these occur where F = 0 or H = 1. Mark the F null
clines with horizontal siash marks to indicate that the trajectories Cross them moving
horizontally. The resulting (H, F) plane looks like Figure 5.7.

As remarked previously, the equilibrium points are the points where the H null
clines cross the F null clines. In this example, they are (0, 0). (2,0). and (1, 1). Note

5.3 The Lotka-Volterra Equation, a Predator-Prey Model

As indicated in Figure 5.7, the null cli
a1, clines break the plane i i
fact that all of our examples have four regions is a ncmuwﬂn-. gt ot

: ce. There i
wnnnaﬂaan Sm:hn number Mm regions.) By .n.scmw__m a point in each region in MM.”Es_Ww“:
side of (12) Ew_no H and .Wnaa.._ st I ot eplon S RS o 1_.w:—.=»=M
in Region (IT) and values for the chosen point. For example, the point (3, 1)
( we see from the right-hand side of (12) that at this point S
dH
e
o -2
dt (14

and so the motion in Region IT is u
e 1 _ p and to the left. irecti ion i
the remaining regions can be determined by a w:d”_ e e

al : . .
are marked on the H-F plane as in Figure 5.8. r strategy. The resulting directions

—>H

Figure 5.8

Figure 5.8

also has arrows exhibi .
the direction of exhibited on the null-cline slash marks to indicate

motion across these null clines. These arrows can be determined as
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zontal i irecti f the arrows on
Region (IV) (which is hori 1) must ao to the :mE,._H_M:M_:«MMoE 0

y s of the H-axis are determined by a simi IR ey
i oﬂﬁﬂﬂoﬁﬂn H-F plane completely marked, we are now _._u?couw.,

itati v_avﬂ.nnw of hare-fox evolution as ﬂu&oﬁ_ by our me N__: IR
o icular, suppose we start at the point (3, 1) in wmm_o_”. . Tt ro
i e umh.%_.o_ _nr and so the trajectory 1akes off in this direction. ,_.—._—.mm”wa oo
__MMuawoﬂhM vna._ws. until the F null cline atH = 1 is crossed from 1l :

ere , move straight dow i if we imagine filming
i is, i ght down it. Then, i .
ever to hit the F-axis, it would . .
o o nd rnin e 00 L we vl e b wouldnever oot
i i jvative of H on - ;i Id ne .
s - __n“_.a this v“w“—w_”n thus it couldn’t have hit the F-axis to begin with unless 1
trajectory

started there. There is a general principle at work here:

i i is line is purely
A vertical H null cline cannot be crossed since motion on this line 18 pu
L]
vertical.

. . e R ly
A horizontal F null cline cannot be crossed since motion on this line is pure

L]
horizontal.

jectol and to the right
In any event, once in Region (IV), the tr& ory Soqwgﬁwwas”ﬂ_:-ﬁw s
until it crosses the F null cline at H Hm Maﬂ&%ﬁﬁoﬁ st i
there si i jvative of F 18 : . N
g m.iﬂnﬂ”ﬁnﬁﬂnm&nﬂﬂm 1 partof the F null cline moving .m3=.. Fm“ MM ”w””
H Eﬁﬂwﬂmﬂo: (111) and then moves up and to __.5 right. ..H._.:w Bo:a...ﬁ.a qwﬂw e
the .M: null cline where H = 2-Fis 238..._%.5 time moving up.
. (1) and begins to cycle arou again. : e

gﬁMmﬂNMﬁnqﬁiﬁ a rough sketch of the trajectory a8 determined sO

Readings for Chapter 5

Figure 5.9

Thus, we see that the trajectory circles around the equilibrium point at (1, 1).
However,

at this point, we do not have the tools to decide between the following two
possibilities:

e The trajectory approaches a closed loop trajectory that encircles the equilibrium

point (1, 1). The latter would describe a cyclic oscillation of the predator and
prey numbers.

« The trajectory spirals slowly into the equilibrium point (1, 1). Note that (approx-
imately) cyclic behavior in natural predator-prey populations is not uncommon.

54 Lessons
Here are some key points from this chapter:

o Information can be obtained from a differential equation as in (1) or (10) without
having to solve the equation.

o Study the phase plane analysis for the examples of (1) and (10). In particular,
familiarize yourself with the drawing and marking of null clines and equilibrium
points in these examples, and study how they are used to discern the general
direction of movement of a solution on the phase plane.

READINGS FOR CHAPTER 5
READING 5.1

Left Snails and Right Minds

Commentary: We are returning. to this article from Chapter 2 (Reading 2.2; see
page 23) to try to model the interaction between left-curling and right-curling snails

of the same species. Let L(t) and R(¢) denote their respective populations after time 1.
Here is amodel: 4& = L — L? —aRL and 4 =
constant that measures the

R — R* —aLR. Here, a is a positive
relative interaction between right- and left-handed snails.




