MATH 606-Homework \#5 and \#6 (due dates mixed, see below)

Problems on this page due: Monday May 23 in class

(1) Show that the Lax-Wendroff method is essentially the only explicit finite-difference method for $u_{t}=\alpha u_{x}$ that has the following two properties:
(i) $u_{i, j+1}$ depends only on $u_{i-1, j}, u_{i, j}$ and $u_{i+1, j}$
(ii) the global accuracy (the order of the discretization error) is $O\left(h^{2}+\right.$ k^{2})

You can show this by completing the following steps:
(a) Let

$$
u_{i, j+1}=A_{1} u_{i+1, j}+A_{0} u_{i, j}+A_{-1} u_{i-1, j}
$$

and let U be the exact solution of the PDE and u be the solution of the FDE so that

$$
U_{i, 1}-u_{i, 1}=k O\left(h^{2}+k^{2}\right)
$$

(So here I am asking that you assume $U_{i, 0}=u_{i, 0}$ for all i.)
(b) Expand $U_{i, j+1}$ in a Taylor series about (i, j). Substitute this and the expression for u in part (a) into the expression for the discretization error in part (b).
(c) Solve for A_{1}, A_{0}, and A_{-1}.
(2) Calculate the dissipation and dispersion relations for:
(i) leapfrog
(ii) Lax-Wendroff
(iii) upwinding

Problems on this page are due by class time, Friday May 27

(3) Solve the hyperbolic PDE $u_{t}+\alpha u_{x}=0$ for $x \in[-3,3]$ for $\alpha=1,-1$ with periodic boundary conditions using two different initial conditions:
(i) $u(x, 0)=1-|x|$ for $x \in[-1,1]$, and $u(x, 0)=0$ otherwise
(ii) $u(x, 0)=2|x|^{3}-3 x^{2}$ for $x \in[-1,1]$, and $u(x, 0)$ otherwise

Do this using the two distinct methods
(a) Upwinding (FTBS or FTFS depending on if α is positive or negative). (note: write your code so that it easily switches automatically between the two depending on the sign of α)
(b) Lax-Wendroff

In all cases, computationally show that the method has the correct order of accuracy for fixed $\rho=1 / 2$, varying h (you know the exact solution!). Plot the solutions at $\mathrm{t}=0,1,2,3,4,5$.
Please write your code for a general α and show plots for $\alpha=1$ and $\alpha=-1$, but you need only study the order of accuracy for $\alpha=1$ for (a) and (c).
(4) Solve the hyperbolic PDE $u_{t}+u_{x}=0$ for $x \in[0,5]$ and $t \geq 5$ with the following initial/boundary values:

$$
\begin{gathered}
u(x, 0)=1-|x-1| \text { for } x \in[0,2] \quad \text { and } \quad u(x, 0)=0 \text { for } x>2 \\
u(0, t)=0 \quad \text { for } t \geq 0
\end{gathered}
$$

using Wendroff's implicit method. Study the error for $\rho=.5,1$, and compare the results for this method with the results obtained via my code for Lax-Wendroff solving this same problem. Which combination(s) of ρ and difference scheme gives the best results? Please give a thorough explanation as to why. State which method, if any, seems to be advantageous and why.

Please zip all m-files into one file called "hw6" and email to me at heather@math.ohio-state.edu before class time Friday, May 27. Handwritten components and printed results for these problems should be turned in by the beginning of class the same day.

