CHAPTER 1. INTRODUCTION

This course is an introduction to abstract mathematics. You will learn some
basic terminology (the language of sets, relations, and functions), some fundamental
proof techniques (deduction and induction), and some important concepts common
to all higher mathematics courses (fields, orderings, and completeness). You will,
however, need to learn much more than just concepts and techniques. You must
also learn how to use these ideas to solve problems. We shall accomplish this goal
by asking you to construct proofs.

You may be asking: Why do mathematicians, computer scientists, and statisti-
cians need to learn to prove things? If someone wants to work in industry, why does
one need to learn how to construct a proof? The answer to that question could fill
a book. I will show restraint by mentioning just two reasons.

First reason: People who use mathematics in their work often encounter situa-
tions for which the theory has not yet been worked out. For example, you might
design a program which is quite different from those used by others. You want to
be sure that your program works (i.e., gets the right answer) and is better than
anything else available (for example, it might use less storage or it might require
fewer computations). In order to do that, you will have to analyze the program,
and this activity will use the very same techniques learned constructing proofs.

‘Second reason: People who use mathematics sometimes come up with an idea
so useful that they want to patent it. In order to get a patent, you need to prove
that your idea is correct. You may claim that if the idea solves some problems then
it has to be correct. This pragmatic approach is not sufficient to obtain a patent.
Why? Because those who set up the U.S. Patent Office know what every working
mathematician knows. We are easily fooled! The only way we can be sure that we
have not been fooled, claiming to know more than we do, is by sub jecting our claims
to cold, hard, unforgiving logical argument. Proof plays the same role for users of
mathematics that experimentation plays for scientists. Without such corroborating
evidence, one claim is as good as another.
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and somewhat unstructured environment, we shall begin to introduce axioms for
the real number system and proceed with greater caution. We shall continue, how-
ever, to treat sets as a primitive concept. (The axioms of set theory are beyond the
scope of an introductory class, being both subtler and less easily motivated than
those for the real number system.)

number system. Moreover, even after the real number system was completely un-
derstood it was several decades before anyone even noticed that set theory needed
an axiomatic description.

NUMBERS AND PROOF.

1.1 Real numbers and integers. We shall denote the collection of real numbers
by R or by (—o0, 00). Each real number has a decimal expansion. R satisfies closure
properties: The sum, difference, and product of any pair of real numbers is again a
real number. The quotient of two real numbers is also a real number provided the
divisor is not zero. Division by zero is not allowed.

The collection of real numbers contains severa] important “number systems.”

1. The natural numbers or posttive integers, 1,2, 3, .. ., which we denote by N.

2. The integers, --01=2,=1,0,1,2,..., which we denote by Z.

3. The rationals, numbers of the form m/n where m and n are integers but
n # 0. We shall denote the set of rational numbers by Q.

We call these number systems because they satisfy their own set of closure prop-
erties: The sum and product of natural numbers is a natural number; the sum,
difference, and product of two integers (respectively, rationals) is an integer (re-
spectively, a rational); and the quotient of two rationals is a rational, provided the
divisor is not zero. We note that positive rational numbers are also called fractions.

by the fact that their decimal expansions neither repeat nor terminate. Thus the
number 0.1212... is rational, but the number 0.112123123412345. . . is irrational.
Other irrationals include V2, V3, /3 - V2, 7, and the natural base e,

1.2 Hypotheses and conclusions. We shall be dealing statements or proposi-
tions, i.e., with sentences which are either true or false but not both. Many of
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the statements which occur in mathematics contain if...then clauses, i.e., contain
statements of the form “if X, then Y,” where X and Y are sentences or clauses.
In such a statement, X is called the hypothesis and Y is called the conclusion. For
example, consider the following statements:

A) if z is a boy, then z is human

B) if z is a tiger, then z is mammal.

The hypothesis of statement A (respectively, B) is “z is a boy” (respectively, “z
is a tiger”) and the conclusion of statement A (respectively, B) is “z is human,”
respectively, “z is a mammal”).

Any statement can be written in several different, but equivalent, ways. For
example, statement A above can be written as: 1) All boys are human; 2)zisa
boy implies that z is human; 3) z is human if z is a boy. In particular, the first
clause in a statement is not always its hypothesis, and hypotheses are not always
preceded by “if.”

1.3 Counterexamples. Propositions can be true or false (or neither, but we shall
hide that dirty secret from you for several more semesters). Propositions A and B
above are both true, but

C) if z is a student at UTK, then z lives in Knoxville

is false. There must be several students at UTK who live in Oak Ridge, for example.

When we want to “prove” that a proposition is false, we do not need to construct
a proof. All we need to do is produce a counterezample, i.e., a specific example
which shows the implication to be invalid. For example, to show that proposition
C above is false, we need to identify a SPECIFIC student who goes to UTK but
does not live in Knoxville. The vague statement we made beginning with “There
must be several students...” is not sufficient to show that C is false.

Don't get worried. Since we shall be dealing with propositions involving real
numbers, showing that a proposition is false will not mean that you will be asking
people on the street where they live. Your counterexamples will come from your
knowledge of real numbers.

For example, is the proposition

D) if z is negative, then z* is negative

true or is it false? You probably know from previous courses that the square of a
nonzero real number is positive and that the fourth power of a number is the square
of its square. This is true, but much too complicated to answer our question. If
you believe a proposition to be false, produce a CONCRETE counterexample. In
this case, if we let z = —1, then z* = 1 is NOT negative. This, then, “proves” that
proposition D is false.

On the other hand, if we want to prove that a mathematical proposition is true,
we cannot just look at examples. We must construct a general proof which uses
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definitions and propositions we have previously proved. (There is one situation
when we can use examples to prove a proposition: when the hypotheses are so
restrictive that they only hold for finitely many objects. In this case, we can verify
that the proposition is true by laboriously checking that each object which satisfies
the hypothesis does indeed satisfy the conclusion. Such a “proof” might be best
left to a computer.)

1.4 Negations. The negation of a proposition X is a proposition which has the
opposite meaning of X. We shall denote the negation of a statement X by not X.

The negation of most propositions can be accomplished by inserting a “not” at
an appropriate point. For example, the negation of “z is a boy” is “z is not a boy.”
Don’t make any unnecessary assumptions when you write down the negation of a
statement. Indeed, “r is not a boy” is NOT equivalent to “z is a girl” unless it is
understood that z is appriori a human. For example, if z is a rock then z is most
certainly neither a girl nor a boy.

In most cases, we will insist that you write your negations as explicitly as possible
because doing so conveys more information and is more useful for constructing
proofs. For example, if z is a real number, then the negation of “z < 2” is “z
is not less than 2,” but we will insist that you write the negation as “x > 2." As
we shall see below, this approach will be absolutely essential when the proposition
contains any of the words or phrases and, or, for all, and there ezists. In particular,
writing the negation of “for all real numbers z there exists a real number y such that
z < y” as “for all real numbers = there does NOT exist a y such that z < y” will
be unacceptable. For a correct way to negate statements like this, see Sections
1.13 and 1.40 below.

1.5 Converses and contrapositives. The converse of a proposition “if X, then
Y” is the proposition “if Y, then X”. The contrapositive of “if X, then Y” is
the proposition “if not Y, then not X”. These concepts look similar, but logically
speaking, there is a great difference between a converse and a contrapositive.

If a proposition “if X, then Y” is true, then its contrapositive is also ALWAYS
true. For example, think about proposition 4 above. Its contrapositive is “if z is
not human, then z is not a boy.” Obviously true. If ALL boys are human, then no
“NOT human” can be a boy.

In sharp contrast, the converse of a true proposition might be true, but it also
might very well be false. Consider proposition A again. Its converse “if z is human,
then z is a boy” is obviously false. (To verify that this is the case, we need to
produce a concrete counterexample. Here it is: My mother was human, but she
was not a boy.)

To further drive home the point that the converse of a proposition is logically inde-
pendent from the original proposition, notice that the converse of a false proposition
might be true or it might be false. For example, proposition C above is false, and
S0 is its converse: If z lives in Knoxville, then z is a student at UTK. (I am a
counterexample to that proposition!) On the other hand “if z is human, then z is
a girl” is false, but its converse is true.

The fact that the contrapositive of a proposition and the original proposition are
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logically equivalent can be used to your advantage: Sometimes it is easier to prove
the contrapositive of a proposition than the proposition itself. (This is especially
true when the proposition involves not’s and logical negatives.)

1.6 Example. If z is an irrational of the formz =n + 1, prove that n cannot be
an integer.

PROOF. We prove the contrapositive. If n IS an integer, then z = n + 1 is also
an integer, hence NOT irrational. §

1.7 If and only if propositions. When a proposition AND its converse are both
true, we call such a proposition a tautology and abbreviate it by using the phrase if
and only if. For example, one of the most useful tools for finding roots of polynomials
is the tautology

ab=0if and only ifa = 0 or b = 0.

What this means is that if ab = 0, then at least one of the numbers a or b is zero,
and conversely, if either one (or both) of the numbers a or b is zero, then the product
ab is also zero.

Notice, then, that any proof of an “if and only if’ proposition has two halves.
One must prove that the hypothesis implies the conclusion, and that the conclusion
implies the hypothesis.

1.8 Quantifiers. Many mathematical propositions involve information which spec-
ifies how many things satisfy the given implication. Such information is often given
using one of the following two quantifiers:
1. there is (sometimes written there are or there ezist(s))—meaning AT LEAST
ONE,
2. for all (sometimes written for every or given)—meaning every single one with
NO EXCEPTIONS.

It is important for you to recognize from the very beginning that proofs verifying
statements which involve “there exists” are very different from those which involve
“for all.” To prove that THERE EXISTS a y with a property P we must demonstrate
how to find such a y. (Sometimes this is accomplished by specifying y using a
formula—see Example 1.9 below. At other times this is accomplished by appealing
to some fundamental axiom.)

To prove that a property P holds FOR ALL z we must show that P holds for a
general z, that is for every single possible z. In particular, if any restrictions are
made on z besides the restrictions imposed by the hypotheses, the proof of “for all”
is invalid. Let’s demonstrate the difference by an example.

1.9 Example. Which of the following propositions is true?
E) For all real numbers z there is an integer y such that y < z

F) There is an integer y such that y < z for all real numbers z

PROOF OF E. Let z = [z] be the greatest integer in z. (For example, if z = ,
then z = 3. If z = —3.71816, then z = —4.) By definition, z is an integer and
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25z<z+1 Sety=2z-1. Thenyisanint.egera.ndy:z—l<z$z. In
particular, y < z.

FALSE PROOF OF STATEMENT F. Let z = 7 and set y=3. Then y < z. What’s
wrong with this proof? We specified z by letting z = m. But statement F claims
that y < z holds for ALL z, not just m,

CORRECT SOLUTION TO STATEMENT F. This statement is false. If such a special
y exists, then any real number including z = y + 1 would have to satisfy y < =z.
For z = y + 1 this is correct, but forz =y —1, it is NOT correct: r=y-1<y.
Therefore, statement F is false. ]

1.10 WARNING. Quantifiers in mathematical propositions are highly noncom-
mutative.

For example, statements E and F above are identical with one exception: the
“for all” in statement E precedes “there exists,” whereas in statement F' “there
exists” precedes “for all.” Yet, E is true but F is false!

1.11 Example. Prove that the following proposition is true.

G) Given an irrational z, there is an irrational y such that y — z is an integer.

In view of Warning 1.10, we know better than to change the order of these
quantifiers in statement G. Nevertheless, there are many other ways to misinterpret
this proposition. Here are two more:

1) y — z is an integer for all irrationals z and y. This cannot be true since /2
and v/3 are irrational but V3 - /2 is not an integer.

2) y — z is an integer for some irrationals z and y. This proposition IS true,
for example (v/2 + 1) = V2 = 1, but it is NOT equivalent to the original
proposition.

The phrase “given any irrational z” means “for all irrationals z.” Thus the correct
interpretation of proposition G is as follows. For all irrational numbers z, there is
an irrational number y (which in general depends on z) such that y—z is a positive
integer. A correct proof would begin with the statement “Let z be an irrational
number.” Then we would have to show how to manufacture an irrational y using z
(without making any additional assumptions about z) such that y —z is an integer.
One choice for y would be y = z, for then Y=z =0 is always an integer. J

1.12 More examples. Evidently, you must be able to understand the secret lan-
guage of quantifiers in order to interpret propositions and to construct correct
proofs. To further explore the difference between and the meaning of the two
standard quantifiers, consider the following two statements:

H) There is a quadratic function f such that f(2) < £(3).

I) Given a quadratic function fs £(2) < £(3).
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Statement H is true because it only asks whether one such function exists. (Yes
it does, e.g., f(z) = z2.) Statement I is false because the word “given” means that
EVERY quadratic satisfies f(2) < f(3). This is evidently false (e.g., f(z)=5-2?
is a quadratic but f(2) = 1 is NOT less than f(3) = —4).

To make matters worse, sometimes the quantifier “for all” can be implicit when
variables are used. For example, consider the following proposition: Suppose that
f(z) =3z +5. If f(a) < 0 and f(b) > 0, then there is a ¢ between a and b such
that f(c) = 0. Although no quantifier is explicitly associated with a and b, it is
understood by the notation that what is meant is that FOR EVERY pair of real
numbers a and b which satisfy f(a) < 0 < f(b), there is a ¢ between a and b such
that f(c) = 0. Hence a proof which begins with “let a = —2 and b = 2” will not
prove the proposition but only a special case.

1.13 Negating quantifiers. In order to negate a statement that contains quan-
tifiers, one adds a “not” at an appropriate point, but also replaces the quantifier
“there is” by “for all,” and vice versa. For example, the negation of the proposition
“there is a real number z such that z < —n for all n € N” is “for EVERY real
number z there is an n € N such that z > —n” (think about it).

Again, we insist that you write out negations explicitly. Negating There is a real
number y such that z > y for all real numbers z by writing “there is no y such
that z > y for all real numbers z” is unacceptable. The correct negation of this
statement is: “For all real numbers y, there is a real number z such that z < 3."

1.14 Proof types. There are several types of proof which you may have seen in
a previous course, e.g., high school geometry.

A deductive proof of a statement “X implies Y” begins by assuming X, then
proceeds step by step until Y is verified. Each step must be justified by a hypothesis,
a definition, or a proposition already proved. This is the way we proved statement
E above.

An inductive proofis a special technique for proving statements involving integers.
We will discuss this type of proof thoroughly in Chapter 4.

A proof by contradiction begins by assuming X and not Y, then proceeds step
by step as in a deductive proof, but the aim is to obtain a contradiction, i.e., a
conclusion which is either obviously false or contrary to the assumptions made. At
this point, the proof is complete. The phrase “suppose not” or “suppose to the
contrary” always indicates a proof by contradiction. °

Proofs by contradiction are also called indirect proofs. Most theorems have many
different proofs, some direct and some indirect. If you have a choice, the direct proof
(which gives more information) is preferable. In some cases you have no choice, or
the direct proof is so much more complicated that it is prudent to give the indirect
proof anyway.

The following is an illustration of an indirect proof involving quantifiers.

1.15 Example. Given an irrational x, prove that = + x is also irrational.

SOLUTION. Here is a false proof given by many beginning students. Suppose not,
i.e., the sum is rational. Let z = /2. Then z + z = 2v/2 which IS irrational, a
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contradiction. Hence the theorem is true.

What is wrong with this “proof”? The quantifier was not negated correctly. The
proposition says “FOR ALL irrationals z, z + z is irrational.” Hence the negation
of the proposition is “there IS (at least, but possibly ONLY, one) irrational = such
that  + z is rational”. Since there is no guarantee that the special irrational is
z = /2 the false proof lost generality at that point.

Here is a correct proof. Suppose not, i.e., there is some irrational z such that
z +z is rational. Thus 2z = z + z = p/q for some integers p, ¢ with g # 0. Solving
this equation for z, we obtain z = p/(2q). Thus z is also rational, a contradiction. §

EXERCISES.

1. Let z be a real number and p be a rational. If z + p is irrational, prove that z is
irrational. Does this implication still hold if we replace z + p with zp?
2. Negate the following propositions.

a) For all € > 0 there is an integer n such that 1/n<e. .
b) For all real numbers z there is an integer n such that z < n.
c) For all irrationals = and y, the sum z -+ y is irrational.

3. For each of the following propositions, identify its hypotheses and conclusion,
and write out its converse and contrapositive,

a) Given a real number z, there is a positive integer n such that n > z.
b) A real number z is irrational if z + 5 is irrational.

c) A real number z satisfies 2 > 1 when z is a natural number.

d) Ifne€Z thenn< -1is always true provided n < 0 also holds.

4. Prove that given € < 0, there is a real number a such that a > €.
5. Prove that for all € > 0 there is an a > 0 such that a < ¢.
6. Suppose that f(z) = z3 + 2. Prove that if f(a) <0 and f(b) > 0, then there is
a ¢ between a and b such that f(c) = 0.
7. Decide which of the following propositions are true and which are false. Give
reasons (but not formal proofs) for your decisions.

a) There is a positive integer n such that n < m for all positive integers m.

b) There is a real number z such that z < y for all real numbers y.

¢) For all integers z there is a positive integer y such that z < y.

d) For all positive integers y there is an integer z such that r < y.

e) Given a real number y there is an integer z such that z < y.

f) Given a real number y there is an integer z such that z < y+ ¢ for all € > 0.

BASIC DEFINITIONS.

1.16 Set notation. If 4 is a set,

r€eA
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means z is an element of A or belongs to A. The negation of z € A will be denoted
by
zg A

Thus z ¢ A means z is not an element of A or z does not belong to A. For example,
l1eN, —3€Z,and 7 ¢ Z.

The set with no elements, called the empty set, will be denoted by the Danish
letter 0. Thus the statement € 0 is ALWAYS false.

Specific sets are often denoted using curly brackets which enclose an explicit
description of that set. For example, the set of real numbers z which satisfy £2 = 1
is denoted by

{z : z is a real number and z2 = 1}.

If a set is simple enough (e.g., finite), we sometimes denote it by listing its elements
inside curly brackets. For example, the set above can also be denoted by

{~1,1}.

1.17 DEFINITION. Let A and B be sets.

a) Aissaid to be a subset of B or contained in B (notation: 4 C B) if and only
if every element of A4 is an element of B. (Thus 0 is a subset of ALL sets.)
b) A is said to be a proper subset of B or properly contained in B (notation:
A C B) if and only if 4 S B and there is at least one element of B which
does not belong to A.
Forexample,NCZCQcR.

The symbols C and c are analogues of the symbols < and <. The latter implies
the former but not conversely. Thus {1,2} € (1,2, 3}, {1,2,3} ¢ {3,2,1}, and
{1,2} c {1,2, 3} are all true, but {1,2,3} c {3,2, 1} is not. In fact 4 C A always
holds no matter what set 4 is.

1.18 Intervals. A subset of R is called an interval if it is one of the following four
types (the symbol := means equal by notation or definition):

(a,b)::{a:ER:a<z<b}, a<b,
[a,b)::{xER:aS_:c(b}, a<b,
(a,b]:={:c€R:a<a:5b}, a<b,
[a,b]:::{:r:eR:anSb}, a<b.

Thus 0 € [0,1), 1/2 € (0,1), 0 ¢ (0,1), and 2 ¢ (0,1).

1.19 Examples. Prove the Jollowing statements
a) (-1,1] C [-1, 1] b) [0,1) < o, 1] ¢) [0,1) is not a subset of (0,1].

PROOF. a) According to Definition 1.17, to show that (=1,1] is a subset of [-1,1],
We must show that each element which belongs to the former belongs to the latter.
Let z € (-1,1). By the definition of intervals, —1 < 7 < 1. In particular (that is
being less specific), -1 <z < 1, Le, z € [-1,1).
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b) To show that [0,1) is a proper subset of [0, 1], we must show [0,1) C [0, 1] but
that the latter contains at least one element which does not belong to the former.
Let z € [0,1). By the definition of intervals, 0 < z < 1. In particular, 0 < z < 1,
i.e., z € [0,1]. This shows that [0,1) C [0,1]. To finish this part of the proof, notice
that 1 € [0,1] but 1 ¢ [0,1).

c) To show that [0,1) is not a subset of (0,1] all we have to do is show that
there is one element of the former which does not belong to the latter. This is easy:
0€[0,1) but 0 ¢ (0,1)). m

1.20 DEFINITION. Two sets 4 and B are said to be equal if and onlyif AC B
and B C A.

Note: This definition shows that the way to prove that two sets are equal is to
show each is a subset of the other.

1.21 Example. Prove that
{reR:0< 3z <9} =0,3).

PROOF. “C” Letz € {zx € R:0< 3z < 9} ie., 0 < 3z < 9. Recall that when
a < b is multiplied by a number d, we have ad < bd when d is positive and ad > bd
when d is negative. Since d = 1/3 is positive, multiplying 0 < 3z < 9 by d results
in0<z<3. Thus z € [0, 3).

Q" Let z € [0,3), i.e, 0 < z < 3. Multiplying this inequality by 3 yields
0<32<9. Thusze{zeR:0<32<9}. 8

1.22 The outline of nearly every direct proof. In previous mathematics
courses, you were often given rote procedures to follow for every major problem
type. For example, if you were asked to find the local extrema of a function, you
knew exactly what to do: Take the derivative, find all critical numbers, and then
check each of these individually using either the first or second derivative tests. You
will be given no such rote procedures for this course. This will probably make you
uneasy at first, but let’s face it. If what you do in your eventual job can be reduced
to an algorithm, sooner or later they will replace your job by a computer. You will
survive the vicissitudes of the increasingly volatile job market only if you can think.
In particular, don’t search the examples in a given section for a template to solve
each of the exercises in that section. No such template will be given.

However, don’t get too worried. Although proof construction cannot be reduced
to rote procedures, there are basic steps common to all direct proofs.

Step 1 Suppose the hypothesis. This may seem like a no-brainer, but you'd be sur-
prised how many students fail to recognize that this crucial step is the be-
ginning of all direct proofs.

Step 2 Use the definition to interpret the hypothesis. This step is also fairly routine.
Whatever the hypothesis assumes must mean something in plain, ordinary
language. Look up the definition (if you haven’t already memorized it) and
write out what that hypothesis means.
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Step 3 Do something creative. This is the hardest part. You might use algebra. You
might break the argument into cases: If the hypothesis implies “A” or “B,”
you might use A for Case 1 and B for Case 2; if “C” figures prominently in
the conclusion, you might use “C™ for Case 1, and “not C” for Case 2.

If you're still having trouble with this step, write out what the conclusion
means in plain, ordinary language, and start working backwards trying to
reach the hypothesis. The one thing you don’t want to do is just give up
and ask someone else to show you how to prove it. The struggle you endure
trying to solve these homework problems will strengthen you. You will be
amazed at how easy some of this stuff is by the end of the semester, if you
work at it!

Step 4 Verify the conclusion. This is usually done directly from Step 3, but if cases
are involved, many times one of the cases IS the conclusion, and you must
show that the other case is extraneous.

Indirect proofs involve much the same outline, except that you have both the
hypothesis and “not the conclusion” to interpret in Step 2, and Step 4 becomes
obtain a contradiction.

1.23 DEFINITION. Let A and B be sets.

a) The complement of B relative to A (notation: A\ B) is the set of all elements
z such that z € Aand z ¢ B.
b) If B is a subset of R, the complement of B (notation: B¢) is the set R\ B.

1.24 Examples. If A=[0,1), B = (0,1), and C = [~1,2], then

A\ B = {0}
A\C=0
B\A=0

C\A={z:-1<z<0or1<z<2}

C\B={z:-1<z<0orl1<z<2}
A°={zr:z<0o0rz2>1}
C={z:z<-lorz>2}

1.25 DEFINITION. Let A be a subset of R.
a) The reflection of A is defined to be the set

-A:={zeR: -z € A}

b) A set A C R is said to be symmetric if and only if —A = A.
For example, —[0,1) = (-1,0], so [0,1) is not symmetric. On the other hand,
-(-1,1) = (-1,1), so (-1, 1) is symmetric.
You may find the following result useful when working with reflections.




