Labwork Set \# 1 - Math 371 - Fall 2009 Due date: 9/8/2009

1. Write the following ".m" function files:
(a) [5 points] A function that takes in an arbitrary vector and a norm type (either 1,2,or inf), and returns the norm of the vector (using the type of norm specified in the input).
(b) [5 points] A function that takes in an arbitrary matrix and a norm type (again, either 1,2, or inf), and returns the norm of the matrix.
(c) [3 points] A function that takes in an arbitrary square, invertible matrix and a norm type, and uses part (b) to return the condition number of the matrix. Take one wellconditioned matrix and one ill-conditioned matrix and compare the values you get from your condition number function with the built-in value from the MATLAB function cond(A,p).

Note: do not use built-in MATLAB functions that calculate the norms or condition number for you!
2. Note: this problem is connected to problems 2 and 3 of the written homework. Define the matrices A and B by:

$$
\begin{aligned}
A & =\left[\begin{array}{cc}
0.03 & 58.9 \\
5.31 & -6.1
\end{array}\right] \\
B & =\left[\begin{array}{ll}
0.780 & 0.564 \\
0.913 & 0.659
\end{array}\right]
\end{aligned}
$$

(a) [3 points] Use MATLAB (just so that the values are as close to the true values as possible) to obtain precisely the reduced forms of A and B that result from Gaussian elimination. Store these in MATLAB as $r A$ and $r B$. From the written homework, enter the approximate reduced forms that you obtained using 3 digit arithmetic. Store these in MATLAB as $c A$ and $c B$. (these stand for real A (rA) and computed A (cA))
(b) [2 points] Compute the matrices $\delta A=r A-c A$ and $\delta B=r B-c B$. Store these as $d A$ and $d B$ in MATLAB.
(c) [2 points] Use the backslash operator to find the true solutions to $A \vec{x}=\vec{b}$, where $\vec{b}=<$ $59.2,47.0>$, and to $B \vec{x}=\vec{c}$ where $\vec{c}=<.218, .254>$.
(d) [2 points] Compute the condition number of each matrix.
(e) $\left[[3\right.$ points $]$ Compute $\frac{\|\overrightarrow{\delta x}\|}{\|\vec{x}\|}, \frac{\|\overrightarrow{\delta b}\|}{\|\vec{b}\|}, \frac{\|\delta A\|}{\|A\|}$, and the corresponding values for the relative errors for $B \vec{x}=\vec{c}$ using the functions you developed in number 1 . Check to see that the inequality

$$
\frac{\|\overrightarrow{\delta x}\|}{\|\vec{x}\|} \leq \kappa(A)\left(\frac{\|\delta A\|}{\|A\|}+\frac{\|\overrightarrow{\delta b}\|}{\|\vec{b}\|}\right)
$$

from lecture is satisfied.
3. [5 points] Write a function that takes in an arbitrary upper triangular matrix U (so it is also square) and a vector \vec{b} and returns the solution to $U \vec{x}=\vec{b}$ obtained by back-substitution.
(in other words, the solution is obtained in the same way we have been getting the final solution to a system in class - from the upper triangular matrix that is the end product of Gaussian elimination.. the last term x_{n} is easy to find, and then you use it in the second to last equation for x_{n-1}, and then use those two to find x_{n-2} etc.)
Be sure to check that it performs correctly by comparing to the solution found by MATLAB's backslash operator.

