
Homework Set # 8 SOLUTIONS – Math 371 – Fall 2009
Quiz Date: 11/24

1. Convert the problem
y′′ − 0.1(1 − y2)y′ + y = 0

with y(0) = 1 and y′(0) = 1 to a first order system.

Solution:

Let y2 = y′, then the ODE becomes y′2 − 0.1(1 − y2)y2 + y = 0 and the inital conditions
become y(0) = 1 and y2(0) = 1. We could also write this as

z′ =

[

y′

y′2

]

=

[

y2

0.1(1 − y2)y2 − y

]

such that z(0) =< 1, 1 >.

2. Suppose that
dy

dt
= f(t, y(t)) .

(a) Use a Taylor Series expansion with a remainder term to show that

y(tn + h) = y(tn) + hf(tn, y(tn)) +
h2

2

df

dt
(tn, y(tn)) +

h3

6

d2f

dt2
(ξ, y(ξ)) ,

where ξ ∈ (tn, tn + h).

(b) Write an algorithm for generating approximates y0, y1, y2, . . . using the expansion from
part (a). Show that it has local truncation error of order h3.

(c) Apply this method to the ODE (method is referred to as Taylor’s method of order 2)

dy

dt
= t + y

with y(0) = 0.

Solution:

(a) The general taylor polynomial of order 2 with remainder for y is

y(t) = y(c) + y′(c)(t − c) +
1

2
y′′(c)(t − c)2 +

1

6
y(3)(z)(t − c)3

for some z between t and c. If we let the basepoint c = tn, recognize that y′(t) = f(t, y(t))
and evaluate the Taylor polynomial with remainder at t = tn + h, we get

y(tn + h) = y(tn) + hf(tn, y(tn)) +
1

2
f ′(tn, y(tn))h2 +

1

6
f ′′(z, y(z))h3

for some z ∈ (tn, tn + h). and we are done.



(b) We can get a numerical method of order 2 by letting

yn+1 = yn + hf(tn, yn) +
h2

2
f ′(tn, yn) .

The local truncation error can be obtained by subtracing y(tn+1)− yn+1, and assuming
that all prior steps are made without error, so that

y(tn+1) − yn+1 = y(tn) − yn + h[f(tn, y(tn)) − f(tn, yn)] +
h2

2
[f ′(tn, y(tn)) − f ′(tn, yn)] +

h3

6
f ′′(z)

(1)

=
h3

6
f ′′(z) (2)

because we’ve assumed that y(tn) = yn. Thus, the l.t.e. is of order h3, and the method
is order 2.

(c) If y′ = t + y, then f(t, y) = t + y, so that our method becomes

yn+1 = yn + h(tn + yn) +
h2

2
(1 + (tn + yn))

or
yn+1 = (1 + h + h2/2)yn + (h + h2/2)tn + h2/2

If y(0) = 0, then y(t1) = h2/2, and y(t2) = (1 + h + h2/2)(h2/2) + h2 + h3/2 + h2/2 =
2h2 + h3 + h4/4, and so on...

3. Find the ranges for h that yield stability for the implicit trapezoid method

yn+1 = yn +
h

2
(f(tn, yn) + f(tn+1, yn+1)) ,

applied to the problem y′ = λy, with y(0) = y0.

For the ODE y′ = λy, we have f(t, y) = λy, so the method becomes

yn+1 = yn +
h

2
(λyn + λyn+1)

or

yn+1 =
2 + λh

2 − λh
yn .

Starting with n = 0, then, we get

y1 =
2 + λh

2 − λh
y0

y2 =
2 + λh

2 − λh
y2 =

(

2 + λh

2 − λh

)2

y0

y3 =

(

2 + λh

2 − λh

)3

y0

and so on, so that in general

yn =

(

2 + λh

2 − λh

)n

y0



Thus any error in y0 gets amplifed by
(

2+λh

2−λh

)n

at the n-th step. So for stability, we need

∣

∣

∣

∣

2 + λh

2 − λh

∣

∣

∣

∣

≤ 1

or
|2 + λh| ≤ |2 − λh|

which gives, by squaring both sides

4 + 2λh + λ2h2 ≤ 4 − 2λh + λ2h2

or
4λh ≤ 0

Since h > 0 is always true, we see that if λ > 0, the method is unstable for all h and if λ < 0
the method is stable for all h.

4. Derive a three-step implicit method that is accurate on polynomials up to degree three.

We can start, as in class, by assuming the form

yn+1 = α1yn + h(β0f(tn+1, yn+1) + β1f(tn, yn) + β2f(tn−1, yn−1) + β3f(tn−2, yn−2)) .

Now, we just need to find coefficients α1, β0, β1, β2, β3 that make this method to be order 3.
We can do this by making sure that it is exact on any cubic polynomial. First, make sure that
it is exact on constatants, so on y(t) = 1. Note that then y′(t) = 0, so the method becomes

1 = α1 ∗ 1 + 0

so that α1 = 1 must be true. Now, let y(t) = t, so that y′(t) = 1. Then

tn+1 = tn + h(β0 + β1 + β2 + β3)

or after simplifying 1 = β0 + β1 + β2 + β3. Letting y(t) = t2 so that y′(t) = 2t gives

t2n+1 = t2n + 2h(β0tn+1 + β1tn + β2tn−1 + β3tn−2) .

Again, simplifying gives

tn + h/2 = β0tn+1 + β1tn + β2tn−1 + β3tn−2) ,

and
(1 − (β0 + β1 + β2 + β3))tn + (1/2 − (β0 − β2 − 2β3))h = 0 .

Notice that if we apply the condition we got from the equation for y(t) = t of β0+β1+β2+β3 =
1 to this current result, we get

1/2 − (β0 − β2 − 2β3) = 0 .

Finally letting y(t) = t3, then y′(t) = 3t2, so that

(tn+1)
3 = t3n + 3h(β0t

2
n+1 + β1t

2
n + β2t

2
n−1 + β3t

2
n−2) .



Simplifying gives

(3 − 3(β0 + β1 + β2 + β3))t
2
n + (3 − (6β0 − 6β2 − 12β3))tnh + (1− (3β0 + 3β2 + 12β3)h

2 = 0 .

Again, applying the two previous results of 1/2−(β0−β2−2β3) = 0 and β0+β1 +β2+β3 = 1,
this reduces to

1 − (3β0 + 3β2 + 12β3) = 0 .

So, we get a system of 3 equations in the four unknowns β0, β1, β2 and β3 which we can
rewrite as a matrix problem





1 1 1 1 1
1 0 −1 −2 1/2
3 0 3 12 1





which reduces to




1 1 1 1 1
0 1 2 3 1/2
0 0 1 0 −1/12





So that the general solution looks like

< β0, β1, β2, β3 >=< 5/12, 2/3,−1/12, 0 > +β3 < 2,−3, 0, 1 >

. Note that we get a free parameter in the solution because the system is underdetermined
(there are fewer equations than there are coefficients). Thus, we can pick β3 to be anything
we want and this will give us a method of order 3 (note, we should not take β3 = 0 because
then the method would be 2-step rather than 3-step). For example, we can let β3 = 1/12,
then our method is

yn+1 = yn + h(
7

12
f(tn+1, yn+1) +

5

12
f(tn, yn) +

−1

12
f(tn−1, yn−1) +

1

12
f(tn−2, yn−2)) .

5. Show that the modified Euler Method can be constructed as a predictor corrector method
that uses Euler’s (explict) method as the predictor, and some implicit method as the corrector
(identify which one).

Solution:

Using Euler’s method as a predictor means we will first approximate yn+1 by

yn+1 = yn + hf(tn, yn) .

Now, this gives an approximation for y′(tn+1) by using the ODE:

y′(tn+1) = f(tn+1, y(tn+1)) ≈ f(tn+1, yn + hf(tn, yn))

If we now use Backward Euler as our corrector, we then get a new approximation for yn+1 by

yn+1 = yn + hf(tn+1, yn+1) ≈ yn + hf(tn+1, yn + hf(tn, yn)) .

Notice that the final approximation for yn+1 is then

yn+1 = yn + hf(tn+1, yn + hf(tn, yn)) ,

which is exactly what we called the “modified Euler method”. So, by using Euler’s method
as a predictor and backward Euler’s method as a corrector we can get the same thing as we
get for the modified Euler method.


