Homework Set \# 8 SOLUTIONS - Math 371 - Fall 2009
 Quiz Date: 11/24

1. Convert the problem

$$
y^{\prime \prime}-0.1\left(1-y^{2}\right) y^{\prime}+y=0
$$

with $y(0)=1$ and $y^{\prime}(0)=1$ to a first order system.

Solution:

Let $y_{2}=y^{\prime}$, then the ODE becomes $y_{2}^{\prime}-0.1\left(1-y^{2}\right) y_{2}+y=0$ and the inital conditions become $y(0)=1$ and $y_{2}(0)=1$. We could also write this as

$$
z^{\prime}=\left[\begin{array}{l}
y^{\prime} \\
y_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
y_{2} \\
0.1\left(1-y^{2}\right) y_{2}-y
\end{array}\right]
$$

such that $z(0)=<1,1>$.
2. Suppose that

$$
\frac{d y}{d t}=f(t, y(t))
$$

(a) Use a Taylor Series expansion with a remainder term to show that

$$
y\left(t_{n}+h\right)=y\left(t_{n}\right)+h f\left(t_{n}, y\left(t_{n}\right)\right)+\frac{h^{2}}{2} \frac{d f}{d t}\left(t_{n}, y\left(t_{n}\right)\right)+\frac{h^{3}}{6} \frac{d^{2} f}{d t^{2}}(\xi, y(\xi)),
$$

where $\xi \in\left(t_{n}, t_{n}+h\right)$.
(b) Write an algorithm for generating approximates $y_{0}, y_{1}, y_{2}, \ldots$ using the expansion from part (a). Show that it has local truncation error of order h^{3}.
(c) Apply this method to the ODE (method is referred to as Taylor's method of order 2)

$$
\frac{d y}{d t}=t+y
$$

with $y(0)=0$.

Solution:

(a) The general taylor polynomial of order 2 with remainder for y is

$$
y(t)=y(c)+y^{\prime}(c)(t-c)+\frac{1}{2} y^{\prime \prime}(c)(t-c)^{2}+\frac{1}{6} y^{(3)}(z)(t-c)^{3}
$$

for some z between t and c. If we let the basepoint $c=t_{n}$, recognize that $y^{\prime}(t)=f(t, y(t))$ and evaluate the Taylor polynomial with remainder at $t=t_{n}+h$, we get

$$
y\left(t_{n}+h\right)=y\left(t_{n}\right)+h f\left(t_{n}, y\left(t_{n}\right)\right)+\frac{1}{2} f^{\prime}\left(t_{n}, y\left(t_{n}\right)\right) h^{2}+\frac{1}{6} f^{\prime \prime}(z, y(z)) h^{3}
$$

for some $z \in\left(t_{n}, t_{n}+h\right)$. and we are done.
(b) We can get a numerical method of order 2 by letting

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right)+\frac{h^{2}}{2} f^{\prime}\left(t_{n}, y_{n}\right) .
$$

The local truncation error can be obtained by subtracing $y\left(t_{n+1}\right)-y_{n+1}$, and assuming that all prior steps are made without error, so that

$$
\begin{equation*}
y\left(t_{n+1}\right)-y_{n+1}=y\left(t_{n}\right)-y_{n}+h\left[f\left(t_{n}, y\left(t_{n}\right)\right)-f\left(t_{n}, y_{n}\right)\right]+\frac{h^{2}}{2}\left[f^{\prime}\left(t_{n}, y\left(t_{n}\right)\right)-f^{\prime}\left(t_{n}, y_{n}\right)\right]+\frac{h^{3}}{6} f^{\prime \prime}(z) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{h^{3}}{6} f^{\prime \prime}(z) \tag{2}
\end{equation*}
$$

because we've assumed that $y\left(t_{n}\right)=y_{n}$. Thus, the l.t.e. is of order h^{3}, and the method is order 2.
(c) If $y^{\prime}=t+y$, then $f(t, y)=t+y$, so that our method becomes

$$
y_{n+1}=y_{n}+h\left(t_{n}+y_{n}\right)+\frac{h^{2}}{2}\left(1+\left(t_{n}+y_{n}\right)\right)
$$

or

$$
y_{n+1}=\left(1+h+h^{2} / 2\right) y_{n}+\left(h+h^{2} / 2\right) t_{n}+h^{2} / 2
$$

If $y(0)=0$, then $y\left(t_{1}\right)=h^{2} / 2$, and $y\left(t_{2}\right)=\left(1+h+h^{2} / 2\right)\left(h^{2} / 2\right)+h^{2}+h^{3} / 2+h^{2} / 2=$ $2 h^{2}+h^{3}+h^{4} / 4$, and so on...
3. Find the ranges for h that yield stability for the implicit trapezoid method

$$
y_{n+1}=y_{n}+\frac{h}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right),
$$

applied to the problem $y^{\prime}=\lambda y$, with $y(0)=y_{0}$.
For the ODE $y^{\prime}=\lambda y$, we have $f(t, y)=\lambda y$, so the method becomes

$$
y_{n+1}=y_{n}+\frac{h}{2}\left(\lambda y_{n}+\lambda y_{n+1}\right)
$$

or

$$
y_{n+1}=\frac{2+\lambda h}{2-\lambda h} y_{n} .
$$

Starting with $n=0$, then, we get

$$
\begin{gathered}
y_{1}=\frac{2+\lambda h}{2-\lambda h} y_{0} \\
y_{2}=\frac{2+\lambda h}{2-\lambda h} y_{2}=\left(\frac{2+\lambda h}{2-\lambda h}\right)^{2} y_{0} \\
y_{3}=\left(\frac{2+\lambda h}{2-\lambda h}\right)^{3} y_{0}
\end{gathered}
$$

and so on, so that in general

$$
y_{n}=\left(\frac{2+\lambda h}{2-\lambda h}\right)^{n} y_{0}
$$

Thus any error in y_{0} gets amplifed by $\left(\frac{2+\lambda h}{2-\lambda h}\right)^{n}$ at the n-th step. So for stability, we need

$$
\left|\frac{2+\lambda h}{2-\lambda h}\right| \leq 1
$$

or

$$
|2+\lambda h| \leq|2-\lambda h|
$$

which gives, by squaring both sides

$$
4+2 \lambda h+\lambda^{2} h^{2} \leq 4-2 \lambda h+\lambda^{2} h^{2}
$$

or

$$
4 \lambda h \leq 0
$$

Since $h>0$ is always true, we see that if $\lambda>0$, the method is unstable for all h and if $\lambda<0$ the method is stable for all h.
4. Derive a three-step implicit method that is accurate on polynomials up to degree three.

We can start, as in class, by assuming the form

$$
y_{n+1}=\alpha_{1} y_{n}+h\left(\beta_{0} f\left(t_{n+1}, y_{n+1}\right)+\beta_{1} f\left(t_{n}, y_{n}\right)+\beta_{2} f\left(t_{n-1}, y_{n-1}\right)+\beta_{3} f\left(t_{n-2}, y_{n-2}\right)\right) .
$$

Now, we just need to find coefficients $\alpha_{1}, \beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}$ that make this method to be order 3 . We can do this by making sure that it is exact on any cubic polynomial. First, make sure that it is exact on constatants, so on $y(t)=1$. Note that then $y^{\prime}(t)=0$, so the method becomes

$$
1=\alpha_{1} * 1+0
$$

so that $\alpha_{1}=1$ must be true. Now, let $y(t)=t$, so that $y^{\prime}(t)=1$. Then

$$
t_{n+1}=t_{n}+h\left(\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}\right)
$$

or after simplifying $1=\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}$. Letting $y(t)=t^{2}$ so that $y^{\prime}(t)=2 t$ gives

$$
t_{n+1}^{2}=t_{n}^{2}+2 h\left(\beta_{0} t_{n+1}+\beta_{1} t_{n}+\beta_{2} t_{n-1}+\beta_{3} t_{n-2}\right)
$$

Again, simplifying gives

$$
\left.t_{n}+h / 2=\beta_{0} t_{n+1}+\beta_{1} t_{n}+\beta_{2} t_{n-1}+\beta_{3} t_{n-2}\right)
$$

and

$$
\left(1-\left(\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}\right)\right) t_{n}+\left(1 / 2-\left(\beta_{0}-\beta_{2}-2 \beta_{3}\right)\right) h=0 .
$$

Notice that if we apply the condition we got from the equation for $y(t)=t$ of $\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}=$ 1 to this current result, we get

$$
1 / 2-\left(\beta_{0}-\beta_{2}-2 \beta_{3}\right)=0
$$

Finally letting $y(t)=t^{3}$, then $y^{\prime}(t)=3 t^{2}$, so that

$$
\left(t_{n+1}\right)^{3}=t_{n}^{3}+3 h\left(\beta_{0} t_{n+1}^{2}+\beta_{1} t_{n}^{2}+\beta_{2} t_{n-1}^{2}+\beta_{3} t_{n-2}^{2}\right)
$$

Simplifying gives
$\left(3-3\left(\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}\right)\right) t_{n}^{2}+\left(3-\left(6 \beta_{0}-6 \beta_{2}-12 \beta_{3}\right)\right) t_{n} h+\left(1-\left(3 \beta_{0}+3 \beta_{2}+12 \beta_{3}\right) h^{2}=0\right.$.
Again, applying the two previous results of $1 / 2-\left(\beta_{0}-\beta_{2}-2 \beta_{3}\right)=0$ and $\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}=1$, this reduces to

$$
1-\left(3 \beta_{0}+3 \beta_{2}+12 \beta_{3}\right)=0 .
$$

So, we get a system of 3 equations in the four unknowns $\beta_{0}, \beta_{1}, \beta_{2}$ and β_{3} which we can rewrite as a matrix problem

$$
\left[\begin{array}{cccc|c}
1 & 1 & 1 & 1 & 1 \\
1 & 0 & -1 & -2 & 1 / 2 \\
3 & 0 & 3 & 12 & 1
\end{array}\right]
$$

which reduces to

$$
\left[\begin{array}{llll|c}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 1 / 2 \\
0 & 0 & 1 & 0 & -1 / 12
\end{array}\right]
$$

So that the general solution looks like

$$
<\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}>=<5 / 12,2 / 3,-1 / 12,0>+\beta_{3}<2,-3,0,1>
$$

. Note that we get a free parameter in the solution because the system is underdetermined (there are fewer equations than there are coefficients). Thus, we can pick β_{3} to be anything we want and this will give us a method of order 3 (note, we should not take $\beta_{3}=0$ because then the method would be 2 -step rather than 3 -step). For example, we can let $\beta_{3}=1 / 12$, then our method is

$$
y_{n+1}=y_{n}+h\left(\frac{7}{12} f\left(t_{n+1}, y_{n+1}\right)+\frac{5}{12} f\left(t_{n}, y_{n}\right)+\frac{-1}{12} f\left(t_{n-1}, y_{n-1}\right)+\frac{1}{12} f\left(t_{n-2}, y_{n-2}\right)\right) .
$$

5. Show that the modified Euler Method can be constructed as a predictor corrector method that uses Euler's (explict) method as the predictor, and some implicit method as the corrector (identify which one).

Solution:

Using Euler's method as a predictor means we will first approximate y_{n+1} by

$$
y_{n+1}=y_{n}+h f\left(t_{n}, y_{n}\right) .
$$

Now, this gives an approximation for $y^{\prime}\left(t_{n+1}\right)$ by using the ODE:

$$
y^{\prime}\left(t_{n+1}\right)=f\left(t_{n+1}, y\left(t_{n+1}\right)\right) \approx f\left(t_{n+1}, y_{n}+h f\left(t_{n}, y_{n}\right)\right)
$$

If we now use Backward Euler as our corrector, we then get a new approximation for y_{n+1} by

$$
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n+1}\right) \approx y_{n}+h f\left(t_{n+1}, y_{n}+h f\left(t_{n}, y_{n}\right)\right) .
$$

Notice that the final approximation for y_{n+1} is then

$$
y_{n+1}=y_{n}+h f\left(t_{n+1}, y_{n}+h f\left(t_{n}, y_{n}\right)\right) \text {, }
$$

which is exactly what we called the "modified Euler method". So, by using Euler's method as a predictor and backward Euler's method as a corrector we can get the same thing as we get for the modified Euler method.

