Homework Set \# 8 - Math 371 - Fall 2009

Quiz Date: 11/24

1. Convert the problem

$$
y^{\prime \prime}-0.1\left(1-y^{2}\right) y^{\prime}+y=0
$$

with $y(0)=1$ and $y^{\prime}(0)=1$ to a first order system.
2. Suppose that

$$
\frac{d y}{d t}=f(t, y(t)) .
$$

(a) Use a Taylor Series expansion with a remainder term to show that

$$
y\left(t_{n}+h\right)=y\left(t_{n}\right)+h f\left(t_{n}, y\left(t_{n}\right)\right)+\frac{h^{2}}{2} \frac{d f}{d t}\left(t_{n}, y\left(t_{n}\right)\right)+\frac{h^{3}}{6} \frac{d^{2} f}{d t^{2}}(\xi, y(\xi)),
$$

where $\xi \in\left(t_{n}, t_{n}+h\right)$.
(b) Write an algorithm for generating approximates $y_{0}, y_{1}, y_{2}, \ldots$ using the expansion from part (a). Show that it has local truncation error of order h^{3}.
(c) Apply this method to the ODE (method is referred to as Taylor's method of order 2)

$$
\frac{d y}{d t}=t+y
$$

with $y(0)=0$.
3. Find the ranges for h that yield stability for the implicit trapezoid method

$$
y_{n+1}=y_{n}+\frac{h}{2}\left(f\left(t_{n}, y_{n}\right)+f\left(t_{n+1}, y_{n+1}\right)\right),
$$

applied to the problem $y^{\prime}=\lambda y$, with $y(0)=y_{0}$.
4. Derive a three-step implicit method that is accurate on polynomials up to degree three.
5. Show that the modified Euler Method can be constructed as a predictor corrector method that uses Euler's (explict) method as the predictor, and some implicit method as the corrector (identify which one).

