Homework Set \# 4 - Math 371 - Fall 2009

No Quiz! Will be included in exam on $9 / 29$

1. Suppose you have the data set $\{(1,10),(2,15),(4,8),(5,2),(7,12)\}$. Use this data for the following parts:
(a) Find the full interpolation polynomial of degree 4 determined by these five points.
(b) Find the piecewise linear interpolation polynomial for these five points.
(c) Find the shape-preserving piecewise cubic polynomial that fits these five points, with $d_{1}=d_{5}=0$ end conditions.
(d) Find the cubic spline piecewise polynomial, with "not a knot" spline end conditions for these five points.

Solution:

(a) Note: the Vandermonde matrix corresponding to this data set is very illconditioned. Better to use the Legendre form for finding the polynomial.

$$
\begin{aligned}
P(x) & =\frac{10}{72}(x-2)(x-4)(x-5)(x-7)+\frac{15}{-30}(x-1)(x-4)(x-5)(x-7) \\
& =\frac{8}{18}(x-1)(x-2)(x-5)(x-7)+\frac{2}{-24}(x-1)(x-2)(x-4)(x-7) \\
& =\frac{12}{180}(x-1)(x-2)(x-4)(x-5)
\end{aligned}
$$

(b) We have 4 intervals between data points, so we have for polynomials. P_{k} denotes the polynomial on the interval $\left[x_{k}, x_{k+1}\right]$.

$$
\begin{gathered}
P_{1}(x)=10+5(x-1) \\
P_{2}(x)=15-\frac{7}{2}(x-2) \\
P_{3}(x)=8-6(x-4) \\
P_{4}(x)=2+5(x-5)
\end{gathered}
$$

(c) $d_{2}=0$ because the slopes around x_{2} have opposite sign. $d_{3}=-420 / 95$ using the weighted harmonic mean given in the text. $d_{4}=0$ again because the slopes around x_{4} have opposite sign. this yields the polynomials

$$
\begin{aligned}
& P_{1}(x)=15\left(3(x-1)^{2}-2(x-1)^{3}\right)+10\left(1-3(x-1)^{2}+2(x-1)^{3}\right) \\
& P_{2}(x)=\left(6(x-2)^{2}-2(x-2)^{3}\right)+\frac{15}{8}\left(8-6(x-2)^{2}+2(x-2)^{3}\right)-\frac{420}{95 * 4}(x-2)^{2}((x-2)-2) \\
& P_{3}(x)=2\left(3(x-4)^{2}-2(x-4)^{3}\right)+8\left(1-3(x-4)^{2}+2(x-4)^{3}\right)-\frac{420}{95}(x-4)((x-4)-1)^{2} \\
& P_{4}(x)=\frac{12}{8}\left(6(x-5)^{2}-2(x-5)^{3}\right)+\frac{2}{8}\left(8-6(x-5)^{2}+2(x-5)^{3}\right)
\end{aligned}
$$

(d) The "not-a-knot" end conditions at the left end give:

$$
\frac{3}{2} d_{2}+d_{1}=\frac{7}{3} \delta_{1}+\frac{1}{3} \delta_{2}
$$

and at the right end we have

$$
\frac{3}{4} d_{5}+\frac{9}{4} d_{4}=2 \delta_{4}+\delta_{3} .
$$

For each interior "knot" we get an additional constraint. They are

$$
\begin{aligned}
& 2 d_{1}+6 d_{2}+d_{3}=6 \delta_{1}+3 \delta_{2} \\
& d_{2}+6 d_{3}+2 d_{4}=3 \delta_{2}+6 \delta_{3} \\
& 2 d_{3}+6 d_{4}+d_{5}=6 \delta_{3}+3 \delta_{4}
\end{aligned}
$$

Putting all of this into a matrix problem, we have $A \vec{d}=\vec{b}$ where $\vec{d}=<d_{1}, d_{2}, d_{3}, d_{4}, d_{5}>$,

$$
A=\left[\begin{array}{ccccc}
1 & 3 / 2 & 0 & 0 & 0 \\
2 & 6 & 1 & 0 & 0 \\
0 & 1 & 6 & 2 & 0 \\
0 & 0 & 2 & 6 & 1 \\
0 & 0 & 0 & 9 / 4 & 3 / 4
\end{array}\right]
$$

and

$$
\vec{b}=\left[\begin{array}{c}
\frac{7}{3} \delta_{1}+\frac{1}{3} \delta_{2} \\
6 \delta_{1}+3 \delta_{2} \\
3 \delta_{2}+6 \delta_{3} \\
6 \delta_{3}+3 \delta_{4} \\
2 \delta_{4}+\delta_{3}
\end{array}\right]
$$

Using the values for the δ_{i} 's found in part (b) and using MATLAB's backslash operator, we have $d_{1}=7.97, d_{2}=1.69 d_{3}=-6.56, d_{4}=-4.40, d_{5}=18.54$ accurate to two decimal places. This gives us the cubic spline polynomials

$$
\begin{aligned}
& P_{2}(x)=15+7.97(x-2)+-3.66(x-2)^{2}+0.531(x-2)^{3} \\
& P_{3}(x)=8-6.56(x-4)-0.47(x-4)^{2}+1.03(x-4)^{3} \\
& P_{4}(x)=2-4.4(x-5)+2.63(x-5)^{2}+1.03(x-5)^{3}
\end{aligned}
$$

2. Now consider a set of 5 generic coordinates $\left\{\left(x_{i}, y_{i}\right) \mid i=1, \ldots, 5\right\}$, with $h_{k}=x_{k+1}-x_{k}=h$ where h is a positive constant. Set up the system of 5 equations for the 5 unknown slopes d_{1}, \ldots, d_{5} as a matrix problem $A \vec{d}=\vec{y}$ for
(a) the "Natural Cubic Spline" - i.e. where $P_{1}^{\prime \prime}\left(x_{1}\right)=P_{n-1}^{\prime \prime}\left(x_{n}\right)=0$
(b) the "Clamped Cubic Spline" with $d_{0}=d_{5}=0$.
(Note: you just need to find A and \vec{y}, but do not need to solve the system)

Solutions:

(a)

$$
A=\left[\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 \\
0 & 1 & 4 & 1 & 0 \\
0 & 0 & 1 & 4 & 1 \\
0 & 0 & 0 & 2 & 1
\end{array}\right]
$$

and $\vec{y}=\left[3 \delta_{1} ; 3\left(\delta_{1}+\delta_{2}\right) ; 3\left(\delta_{2}+\delta_{3}\right) ; 3\left(\delta_{3}+\delta_{4}\right) ; 3 \delta_{4}\right]$
(b)

$$
A=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
1 & 4 & 1 & 0 & 0 \\
0 & 1 & 4 & 1 & 0 \\
0 & 0 & 1 & 4 & 1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

and $\vec{y}=\left[0 ; 3\left(\delta_{1}+\delta_{2}\right) ; 3\left(\delta_{2}+\delta_{3}\right) ; 3\left(\delta_{3}+\delta_{4}\right) ; 0\right]$

