Homework Set # 3 – Math 371 – Fall 2009 Quiz date: 9/17/2009

1. Let

	1	0	0	0	0
	0	1	0	0	0
M =	0	-2	1	0	0
	0	$\frac{1}{2}$	0	1	0
	0	$\overline{3}$	0	0	1

What is the inverse of M? (note: rather than diving into the row reduction, try thinking first in terms of elementary row operations... make a guess and check to see if you are correct). Apply M to a generic 5×5 matrix B (i.e. compute MB). Then compute $M^{-1}(MB)$.

 $2. \ Let$

A =	0	2	-4	-8
	2	1	2	0
	-2	2	-2	1
	4	-2	-4	1

Compute the LU = PA factorization by hand using Gaussian elimination with partial pivoting. [In other words, find L, U, and P and check to make sure you've got the right factorization in the end] Use the decomposition to find the solution to $A\vec{x} = \vec{b}$ where $\vec{b} = <1, 2, 0, -1 >$.

- 3. Suppose A is an $n \times n$ matrix with LU factorization LU = PA. Prove that $\det(A) = \pm \det(U)$. [hint: you might need to go back to your linear algebra book and read up on determinants of triangular and permutation matrices..]
- 4. Because any invertible matrix can be reduced to the identity matrix via Gaussian elimination, it is easy to see that we can find an LU factorization of **any** invertible matrix A of the form LU = PA via the procedure discussed in class. It is tempting to think that we would also be able to find a similar factorization A = LU where L is lower triangular and U is upper triangular for any invertible matrix A. This is not the case, in general! This exercise illustrates this fact.

1 _	0	1]	
A =	1	0	

- (a) Show that A is invertible.
- (b) Show that it is impossible to have a lower triangular matrix L and an upper triangular matrix U such that A = LU.