Homework Set \# 3 - Math 371 - Fall 2009

Quiz date: 9/17/2009

1. Let

$$
M=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & -2 & 1 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 1 & 0 \\
0 & 3 & 0 & 0 & 1
\end{array}\right]
$$

What is the inverse of M ? (note: rather than diving into the row reduction, try thinking first in terms of elementary row operations... make a guess and check to see if you are correct). Apply M to a generic 5×5 matrix B (i.e. compute $M B$). Then compute $M^{-1}(M B)$.
2. Let

$$
A=\left[\begin{array}{cccc}
0 & 2 & -4 & -8 \\
2 & 1 & 2 & 0 \\
-2 & 2 & -2 & 1 \\
4 & -2 & -4 & 1
\end{array}\right]
$$

Compute the $L U=P A$ factorization by hand using Gaussian elimination with partial pivoting. [In other words, find L, U, and P and check to make sure you've got the right factorization in the end] Use the decomposition to find the solution to $A \vec{x}=\vec{b}$ where $\vec{b}=<1,2,0,-1\rangle$.
3. Suppose A is an $n \times n$ matrix with $L U$ factorization $L U=P A$. Prove that $\operatorname{det}(A)= \pm \operatorname{det}(U)$. [hint: you might need to go back to your linear algebra book and read up on determinants of triangular and permutation matrices..]
4. Because any invertible matrix can be reduced to the identity matrix via Gaussian elimination, it is easy to see that we can find an $L U$ factorization of any invertible matrix A of the form $L U=P A$ via the procedure discussed in class. It is tempting to think that we would also be able to find a similar factorization $A=L U$ where L is lower triangular and U is upper triangular for any invertible matrix A. This is not the case, in general! This exercise illustrates this fact.

$$
A=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

(a) Show that A is invertible.
(b) Show that it is impossible to have a lower triangular matrix L and an upper triangular matrix U such that $A=L U$.

