Homework Set # 1 – Math 371 – Fall 2009 Quiz date: 9/1/2009

- 1. If a is an approximate value for a quantity whose true value is t, and a has relative error r, prove from the definitions of these terms that a = t(1 + r).
- 2. Let $p(x) = 1.01x^4 4.62x^3 3.11x^2 + 12.2x 1.99$.
 - (a) Show that the above polynomial can also be written in nested form as was demonstrated in lecture.
 - (b) Use three-digit rounding arithmetic to evaluate p(4.62), using the form of the polynomial given above.
 - (c) Use three-digit rounding arithmetic to evaluate p(4.62), using the nested form of the polynomial from part (a).
 - (d) Compare the approximations in parts (b) and (c) to the true three-digit result p(4.62) = -7.61 by finding the absolute and relative errors.
- 3. Consider $p(x) = x^2 + 62.10x + 1 = 0$. The roots of this equation are $x_1 = -0.1610723$ and $x_2 = -62.08390$ to seven significant digits. Use four digit rounding arithmetic to approximate the roots of p using the quadratic formula. Then compute the relative error for each approximated root. One root should be much more accurate than the other explain why.
- 4. For computing the midpoint m of an interval [a, b], which of the following two formulas is preferable in floating-point arithmetic? When? Why? (Give examples to illustrate your reasoning)
 - (a) m = (a+b)/2.0

(b)
$$m = a + (b - a)/2.0$$

5. Let $\vec{x} \in \mathbb{R}^n$. Show that

$$\|\vec{x}\|_{\infty} \le \|\vec{x}\|_2 \le \sqrt{n} \|\vec{x}\|_{\infty}$$

Solution:

By the definition of the sup norm, we have $\|\vec{x}\|_{\infty} = \max_{1 \le i \le n} |x_i|$. This maximum value is achieved for some index *i*, let's say for i = I. Then $\|\vec{x}\|_{\infty} = \max_{1 \le i \le n} |x_i| = |x_I|$. By our choice of *I*, then, $|x_i| \le |x_I|$ for all $i \in [1, \ldots, n] \subset \mathbb{Z}$.

Now, since $\sum_{i \neq I} (x_i)^2 \ge 0$, we can add x_I^2 to both sides to see

$$\sum_{1 \le i \le n} (x_i)^2 \ge (x_I)^2$$

Taking the square root of both sides gives

$$\|\vec{x}\|_2 \ge |x_I| = \|\vec{x}\|_\infty$$
.

To get the other inequality, we again use the fact that $|x_i| \leq |x_I|$ for all *i*. This tells us that $x_i^2 \leq x_I^2$ for all *i*, so that

$$\|\vec{x}\|_{2} = \sqrt{\sum_{1 \le i \le n} x_{i}^{2}} \le \sqrt{\sum_{1 \le i \le n} x_{I}^{2}} = |x_{I}| \sqrt{\sum_{1 \le i \le n} 1} = \sqrt{n} \|\vec{x}\|_{\infty}$$

6. Suppose that $\|\cdot\|$ defines a vector norm on \mathbb{R}^n . Let A be an $n \times n$ invertible matrix with real entries. Show that

$$\|\vec{x}\|_* = \|A\vec{x}\|$$

defines a norm on \mathbb{R}^n .

1. If $\vec{x} \in \mathbb{R}^n$, then $A\vec{x} \in \mathbb{R}^n$ as well. We know that $\|\cdot\|$ is a norm, so by the first property of norms, $\|A\vec{x}\| \ge 0$ must be true. Thus, for any $\vec{x} \in \mathbb{R}^n$,

$$\|\vec{x}\|_* = \|A\vec{x}\| \ge 0 \; ,$$

and $\|\cdot\|_*$ also satisfies the first property of norms.

2. If $\vec{x} = \vec{0}$, then $A\vec{x} = \vec{0}$. By the second norm property for $\|\cdot\|$, $\|\vec{x}\|_* = \|A\vec{x}\| = \|\vec{0}\| = 0$ must be true. So **if** $\vec{x} = \vec{0}$, then $\|\vec{x}\|_* = 0$.

Now, if we assume that $\|\vec{x}\|_* = 0$, this says that $\|A\vec{x}\| = 0$ by the definition of $\|\cdot\|_*$. Since $\|\cdot\|$ is a norm, we know the only way this can be true is if $A\vec{x} = \vec{0}$. Now, since A is invertible, $A\vec{x} = \vec{0}$ if and only if $\vec{x} = \vec{0}$. Thus we have shown that $\|\vec{x}\|_* = 0$ if and only if $\vec{x} = \vec{0}$.

3. $\|\alpha \vec{x}\|_* = \|A(\alpha \vec{x})\|$ by the definition of $\|\cdot\|_*$. Since A is a matrix, we have

$$||A(\alpha \vec{x})|| = ||\alpha A(\vec{x})|| = |\alpha| ||A\vec{x}|| = |\alpha| ||\vec{x}||_*$$

where the second to last equality is true because $\|\cdot\|$ is a norm, and the last is true by the definition of $\|\cdot\|_*$. Putting it all together, we see that

$$\|\alpha \vec{x}\|_{*} = |\alpha| \|\vec{x}\|_{*}$$
.

4. Finally, we need to show that the triangle inequality holds for $\|\cdot\|_*$:

$$\|\vec{x} + \vec{y}\|_* = \|A(\vec{x} + \vec{y})\| = \|A\vec{x} + A\vec{y}\|$$

Since $\|\cdot\|$ is a norm, it satisfies the triangle in equality, and we get

$$\leq \|A\vec{x}\| + \|A\vec{y}\| = \|\vec{x}\|_* + \|\vec{y}\|_*$$

Again, putting it all together, we see that

$$\|\vec{x} + \vec{y}\|_* \le \|\vec{x}\|_* + \|\vec{y}\|_*$$

Thus, $\|\cdot\|_*$ satisfies all the properties of a norm, and so IS a norm.

7. Show that for A defined by

$$A = \left[\begin{array}{cc} a & b \\ b & a \end{array} \right]$$

for any real numbers $a, b, ||A||_1 = ||A||_2 = ||A||_{\infty}$. $||A||_1 =$ maximum absolute column sum = |a| + |b|. $||A||_{inf} =$ maximum absolute row sum = |a| + |b|. $||A||_2 = \sqrt{\rho(A^T A)}$. Let's compute this spectral radius $\rho(A^T A)$.

$$A^T A = \left[\begin{array}{cc} a^2 + b^2 & 2ab\\ 2ab & a^2 + b^2 \end{array} \right]$$

The eigenvalues are values of λ such that $det(\lambda I - A^T A) = 0$. Since

$$\lambda I - A^T A = \begin{bmatrix} \lambda - (a^2 + b^2) & -2ab \\ -2ab & \lambda - (a^2 + b^2) \end{bmatrix}$$

we have $det(\lambda I - A^T A) = (\lambda - (a^2 + b^2))^2 - 4a^2b^2 = 0$, or $\lambda = a^2 + b^2 \pm 2|a||b| = (|a| \pm |b|)^2$

Thus, the largest value λ can have is $(|a| + |b|)^2$, so

$$||A||_2 = \sqrt{\rho(A^T A)} = |a| + |b|$$
,

and all of the norm values are the same.

8. Show that if

•

$$A = \left[\begin{array}{cc} a & b \\ b & -a \end{array} \right]$$

for any real numbers a, b, then $||A||_2 = \sqrt{a^2 + b^2}$. By definition, $||A||_2 = \max_{\|\vec{x}\| \neq 0} \frac{||A\vec{x}||_2}{\|\vec{x}\|_2}$. Using this particular A, we get

$$\|A\|_{2} = \max_{\|\vec{x}\|\neq 0} \frac{\sqrt{(ax+by)^{2}+(bx-ay)^{2}}}{\sqrt{x^{2}+y^{2}}} = \max_{\|\vec{x}\|\neq 0} \frac{\sqrt{a^{2}x^{2}+2abxy+b^{2}y^{2}+b^{2}x^{2}-2abxy+a^{2}y^{2}}}{\sqrt{x^{2}+y^{2}}}$$

Simplifying, we see

$$= \max_{\|\vec{x}\|\neq 0} \frac{\sqrt{(a^2+b^2)(x^2+y^2)}}{\sqrt{x^2+y^2}} = \max_{\|\vec{x}\|\neq 0} \sqrt{(a^2+b^2)} = \sqrt{a^2+b^2} \ .$$