Homework Set \# 1 - Math 371 - Fall 2009 Quiz date: 9/1/2009

1. If a is an approximate value for a quantity whose true value is t, and a has relative error r, prove from the definitions of these terms that $a=t(1+r)$.
2. Let $p(x)=1.01 x^{4}-4.62 x^{3}-3.11 x^{2}+12.2 x-1.99$.
(a) Show that the above polynomial can also be written in nested form as was demonstrated in lecture.
(b) Use three-digit rounding arithmetic to evaluate p (4.62), using the form of the polynomial given above.
(c) Use three-digit rounding arithmetic to evaluate $\mathrm{p}(4.62)$, using the nested form of the polynomial from part (a).
(d) Compare the approximations in parts (b) and (c) to the true three-digit result $\mathrm{p}(4.62)$ $=-7.61$ by finding the absolute and relative errors.
3. Consider $p(x)=x^{2}+62.10 x+1=0$. The roots of this equation are $x_{1}=-0.1610723$ and $x_{2}=$ -62.08390 to seven significant digits. Use four digit rounding arithmetic to approximate the roots of p using the quadratic formula. Then compute the relative error for each approximated root. One root should be much more accurate than the other - explain why.
4. For computing the midpoint m of an interval $[a, b]$, which of the following two formulas is preferable in floating-point arithmetic? When? Why? (Give examples to illustrate your reasoning)
(a) $m=(a+b) / 2.0$
(b) $m=a+(b-a) / 2.0$
5. Let $\vec{x} \in \mathbb{R}^{n}$. Show that

$$
\|\vec{x}\|_{\infty} \leq\|\vec{x}\|_{2} \leq \sqrt{n}\|\vec{x}\|_{\infty} .
$$

Solution:

By the definition of the sup norm, we have $\|\vec{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$. This maximum value is achieved for some index i, let's say for $i=I$. Then $\|\vec{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|=\left|x_{I}\right|$. By our choice of I, then, $\left|x_{i}\right| \leq\left|x_{I}\right|$ for all $i \in[1, \ldots, n] \subset \mathbb{Z}$.
Now, since $\sum_{i \neq I}\left(x_{i}\right)^{2} \geq 0$, we can add x_{I}^{2} to both sides to see

$$
\sum_{1 \leq i \leq n}\left(x_{i}\right)^{2} \geq\left(x_{I}\right)^{2}
$$

Taking the square root of both sides gives

$$
\|\vec{x}\|_{2} \geq\left|x_{I}\right|=\|\vec{x}\|_{\infty} .
$$

To get the other inequality, we again use the fact that $\left|x_{i}\right| \leq\left|x_{I}\right|$ for all i. This tells us that $x_{i}^{2} \leq x_{I}^{2}$ for all i, so that

$$
\|\vec{x}\|_{2}=\sqrt{\sum_{1 \leq i \leq n} x_{i}^{2}} \leq \sqrt{\sum_{1 \leq i \leq n} x_{I}^{2}}=\left|x_{I}\right| \sqrt{\sum_{1 \leq i \leq n} 1}=\sqrt{n}\|\vec{x}\|_{\infty}
$$

6. Suppose that $\|\cdot\|$ defines a vector norm on \mathbb{R}^{n}. Let A be an $n \times n$ invertible matrix with real entries. Show that

$$
\|\vec{x}\|_{*}=\|A \vec{x}\|
$$

defines a norm on \mathbb{R}^{n}.

1. If $\vec{x} \in \mathbb{R}^{n}$, then $A \vec{x} \in \mathbb{R}^{n}$ as well. We know that $\|\cdot\|$ is a norm, so by the first property of norms, $\|A \vec{x}\| \geq 0$ must be true. Thus, for any $\vec{x} \in \mathbb{R}^{n}$,

$$
\|\vec{x}\|_{*}=\|A \vec{x}\| \geq 0
$$

and $\|\cdot\|_{*}$ also satisfies the first property of norms.
2. If $\vec{x}=\overrightarrow{0}$, then $A \vec{x}=\overrightarrow{0}$. By the second norm property for $\|\cdot\|,\|\vec{x}\|_{*}=\|A \vec{x}\|=\|\overrightarrow{0}\|=0$ must be true. So if $\vec{x}=\overrightarrow{0}$, then $\|\vec{x}\|_{*}=0$.
Now, if we assume that $\|\vec{x}\|_{*}=0$, this says that $\|A \vec{x}\|=0$ by the definition of $\|\cdot\|_{*}$. Since $\|\cdot\|$ is a norm, we know the only way this can be true is if $A \vec{x}=\overrightarrow{0}$. Now, since A is invertible, $A \vec{x}=\overrightarrow{0}$ if and only if $\vec{x}=\overrightarrow{0}$. Thus we have shown that $\|\vec{x}\|_{*}=0$ if and only if $\vec{x}=\overrightarrow{0}$.
3. $\|\alpha \vec{x}\|_{*}=\|A(\alpha \vec{x})\|$ by the definition of $\|\cdot\|_{*}$. Since A is a matrix, we have

$$
\|A(\alpha \vec{x})\|=\|\alpha A(\vec{x})\|=|\alpha|\|A \vec{x}\|=|\alpha|\|\vec{x}\|_{*}
$$

where the second to last equality is true because $\|\cdot\|$ is a norm, and the last is true by the definition of $\|\cdot\|_{*}$. Putting it all together, we see that

$$
\|\alpha \vec{x}\|_{*}=|\alpha|\|\vec{x}\|_{*}
$$

4. Finally, we need to show that the triangle inequality holds for $\|\cdot\|_{*}$:

$$
\|\vec{x}+\vec{y}\|_{*}=\|A(\vec{x}+\vec{y})\|=\|A \vec{x}+A \vec{y}\|
$$

Since $\|\cdot\|$ is a norm, it satisfies the triangle in equality, and we get

$$
\leq\|A \vec{x}\|+\|A \vec{y}\|=\|\vec{x}\|_{*}+\|\vec{y}\|_{*}
$$

Again, putting it all together, we see that

$$
\|\vec{x}+\vec{y}\|_{*} \leq\|\vec{x}\|_{*}+\|\vec{y}\|_{*}
$$

Thus, $\|\cdot\|_{*}$ satisfies all the properties of a norm, and so IS a norm.
7. Show that for A defined by

$$
A=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]
$$

for any real numbers $a, b,\|A\|_{1}=\|A\|_{2}=\|A\|_{\infty}$.
$\|A\|_{1}=$ maximum absolute column sum $=|a|+|b|$.
$\|A\|_{\text {inf }}=$ maximum absolute row sum $=|a|+|b|$.
$\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)}$. Let's compute this spectral radius $\rho\left(A^{T} A\right)$.

$$
A^{T} A=\left[\begin{array}{cc}
a^{2}+b^{2} & 2 a b \\
2 a b & a^{2}+b^{2}
\end{array}\right]
$$

The eigenvalues are values of λ such that $\operatorname{det}\left(\lambda I-A^{T} A\right)=0$. Since

$$
\lambda I-A^{T} A=\left[\begin{array}{cc}
\lambda-\left(a^{2}+b^{2}\right) & -2 a b \\
-2 a b & \lambda-\left(a^{2}+b^{2}\right)
\end{array}\right]
$$

we have $\operatorname{det}\left(\lambda I-A^{T} A\right)=\left(\lambda-\left(a^{2}+b^{2}\right)\right)^{2}-4 a^{2} b^{2}=0$, or

$$
\lambda=a^{2}+b^{2} \pm 2|a||b|=(|a| \pm|b|)^{2}
$$

Thus, the largest value λ can have is $(|a|+|b|)^{2}$, so

$$
\|A\|_{2}=\sqrt{\rho\left(A^{T} A\right)}=|a|+|b|,
$$

and all of the norm values are the same.
8. Show that if

$$
A=\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right]
$$

for any real numbers a, b, then $\|A\|_{2}=\sqrt{a^{2}+b^{2}}$.
By definition, $\|A\|_{2}=\max _{\|\vec{x}\| \neq 0} \frac{\|A \vec{x}\|_{2}}{\|\vec{x}\|_{2}}$. Using this particular A, we get

$$
\|A\|_{2}=\max _{\|\vec{x}\| \neq 0} \frac{\sqrt{(a x+b y)^{2}+(b x-a y)^{2}}}{\sqrt{x^{2}+y^{2}}}=\max _{\|\vec{x}\| \neq 0} \frac{\sqrt{a^{2} x^{2}+2 a b x y+b^{2} y^{2}+b^{2} x^{2}-2 a b x y+a^{2} y^{2}}}{\sqrt{x^{2}+y^{2}}}
$$

Simplifying, we see

$$
=\max _{\|\vec{x}\| \neq 0} \frac{\sqrt{\left(a^{2}+b^{2}\right)\left(x^{2}+y^{2}\right)}}{\sqrt{x^{2}+y^{2}}}=\max _{\|\vec{x}\| \neq 0} \sqrt{\left(a^{2}+b^{2}\right)}=\sqrt{a^{2}+b^{2}} .
$$

