Homework Set \# 1 - Math 371 - Fall 2009 Quiz date: 9/1/2009

1. If a is an approximate value for a quantity whose true value is t, and a has relative error r, prove from the definitions of these terms that $a=t(1+r)$.
2. Let $p(x)=1.01 x^{4}-4.62 x^{3}-3.11 x^{2}+12.2 x-1.99$.
(a) Show that the above polynomial can also be written in nested form as was demonstrated in lecture.
(b) Use three-digit rounding arithmetic to evaluate $\mathrm{p}(4.62)$, using the form of the polynomial given above.
(c) Use three-digit rounding arithmetic to evaluate $\mathrm{p}(4.62)$, using the nested form of the polynomial from part (a).
(d) Compare the approximations in parts (b) and (c) to the true three-digit result $\mathrm{p}(4.62)$ $=-7.61$ by finding the absolute and relative errors.
3. Consider $p(x)=x^{2}+62.10 x+1=0$. The roots of this equation are $x_{1}=-0.1610723$ and $x_{2}=$ -62.08390 to seven significant digits. Use four digit rounding arithmetic to approximate the roots of p using the quadratic formula. Then compute the relative error for each approximated root. One root should be much more accurate than the other - explain why.
4. For computing the midpoint m of an interval $[a, b]$, which of the following two formulas is preferable in floating-point arithmetic? When? Why? (Give examples to illustrate your reasoning)
(a) $m=(a+b) / 2.0$
(b) $m=a+(b-a) / 2.0$
5. Let $\vec{x} \in \mathbb{R}^{n}$. Show that

$$
\|\vec{x}\|_{\infty} \leq\|\vec{x}\|_{2} \leq \sqrt{n}\|\vec{x}\|_{\infty} .
$$

6. Suppose that $\|\cdot\|$ defines a vector norm on \mathbb{R}^{n}. Let A be an $n \times n$ invertible matrix with real entries. Show that

$$
\|\vec{x}\|_{*}=\|A \vec{x}\|
$$

defines a norm on \mathbb{R}^{n}.
7. Show that for A defined by

$$
A=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]
$$

for any real numbers $a, b,\|A\|_{1}=\|A\|_{2}=\|A\|_{\infty}$.
8. Show that if

$$
A=\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right]
$$

for any real numbers a, b, then $\|A\|_{2}=\sqrt{a^{2}+b^{2}}$.

