Answers to Even Exercises, Homework Set 5

Section 11.4\# $16 f_{v}(40,20)$ is approximately equal to 1.15 , and $f_{t}(40,20)$ is approximately 0.45 . The linear approximation to f near $(40,20)$ is then:

$$
f(v, t) \approx 28+1.15(v-40)+0.45(t-20)
$$

Using this we get $f(43,24) \approx 33.25 \mathrm{ft}$.
\# $3824 x-14 y+18 z=88$
Section $11.5 \# 18 \frac{\partial u}{\partial x}(1,2,0)=\frac{4}{\sqrt{10}}, \frac{\partial u}{\partial y}(1,2,0)=\frac{3}{\sqrt{10}}, \frac{\partial u}{\partial t}=\frac{2}{\sqrt{10}}$
\#40 Since $\frac{\delta z}{\delta s}=\frac{\delta z}{\delta x} \frac{\delta x}{\delta s}+\frac{\delta z}{\delta y} \frac{\delta y}{\delta s}=\frac{\delta z}{\delta x}+\frac{\delta z}{\delta y}$, and since $\frac{\delta z}{\delta t}=\frac{\delta z}{\delta x} \frac{\delta x}{\delta t}+\frac{\delta z}{\delta y} \frac{\delta y}{\delta t}=$ $\frac{\delta z}{\delta x}-\frac{\delta z}{\delta y}$, then:

$$
\frac{\delta z}{\delta s} \frac{\delta z}{\delta t}=\left(\frac{\delta z}{\delta x}+\frac{\delta z}{\delta y}\right)\left(\frac{\delta z}{\delta x}-\frac{\delta z}{\delta y}\right)=\left(\frac{\delta z}{\delta x}\right)^{2}+\left(\frac{\delta z}{\delta y}\right)^{2}
$$

Section 11.6\# 26 Since the directional derivative of the depth function in the direction of the boat's travel is 3.92 , the depth in increasing in this direction and so the water is becoming deeper as he departs.
\# 30 (a) The direc. deriv. due south is 0.8 , so you will ascend at a rate of 0.8 vertical meters per horizontal meter.
(b) going northwest, you will descent at a rate of approx. 0.14 vertical meters per horizontal meter
(c) The angle above the horizontal in which the path begins is given by $\tan \theta=1$, or $\theta=\pi / 4$.
\# 32 The curve of steepest ascent is the path that runs perpindicular to all of the contour lines.

