Section $13.5 \# 2 \operatorname{curl} \vec{F}=\nabla \times \vec{F}=\left\langle x\left(z^{2}-y^{2}\right), y\left(x^{2}-z^{2}\right), z\left(y^{2}-x^{2}\right)\right\rangle$, and $\operatorname{div} \vec{F}=$ $\nabla \cdot \vec{F}=6 x y z$
$\# 4 \operatorname{curl} \vec{F}=\nabla \times \vec{F}=\langle x(\sin (x z)-\cos (x y)), y \cos (x y), z \sin (x z)\rangle$, and $\operatorname{div} \vec{F}=\nabla \cdot \vec{F}=0$
$\# 8$ If $\vec{F}=P \vec{i}+Q \vec{j}+R \vec{k}$, then we know $R=0$. Since P and Q don't vary in the z-direction, $\frac{\partial R}{\partial x}=\frac{\partial R}{\partial y}=\frac{\partial R}{\partial z}=\frac{\partial P}{\partial z}=\frac{\partial Q}{\partial z}=0$. As x increases, the x-component of each vector of \vec{F} increases while the y-componenet remains constant, so $\frac{\partial P}{\partial x}>0$ and $\frac{\partial Q}{\partial x}=0$. Similarily as y-increases, we see $\frac{\partial P}{\partial y}=0$ and $\frac{\partial Q}{\partial y}>0$. Putting everything together we get:
(a) $\operatorname{div} \vec{F}>0$
(b) curl $\vec{F}=\overrightarrow{0}$
\# 10 (a) meaningless, (b) vector field, (c) scalar field, (d) vector field,
(e) meaningless, (f) vector field, (g) scalar field, (h) meaningless,
(i) vector field, (j) meaningless, (k) meaningless, (l) scalar field \# 22 these remaining three problems are posted handwritten
\# 24
\# 28

