Answers to Even Exercises, Homework Set 14

- Section 13.5 # 2 curl $\vec{F}=\nabla \times \vec{F}=\langle x(z^2-y^2),y(x^2-z^2),z(y^2-x^2)\rangle,$ and div $\vec{F}=\nabla \cdot \vec{F}=6xyz$
 - # 4 $\operatorname{curl} \vec{F} = \nabla \times \vec{F} = \langle x(\sin(xz) \cos(xy)), y\cos(xy), z\sin(xz) \rangle$, and $\operatorname{div} \vec{F} = \nabla \cdot \vec{F} = 0$
 - # 8 If $\vec{F} = P\vec{i} + Q\vec{j} + R\vec{k}$, then we know R = 0. Since P and Q don't vary in the z-direction, $\frac{\partial R}{\partial x} = \frac{\partial R}{\partial y} = \frac{\partial R}{\partial z} = \frac{\partial P}{\partial z} = \frac{\partial Q}{\partial z} = 0$. As x increases, the x-component of each vector of \vec{F} increases while the y-component remains constant, so $\frac{\partial P}{\partial x} > 0$ and $\frac{\partial Q}{\partial x} = 0$. Similarly as y-increases, we see $\frac{\partial P}{\partial y} = 0$ and $\frac{\partial Q}{\partial y} > 0$. Putting everything together we get:
 - (a) div $\vec{F} > 0$
 - (b) curl $\vec{F} = \vec{0}$
 - # 10 (a) meaningless, (b) vector field, (c) scalar field, (d) vector field,
 - (e) meaningless, (f) vector field, (g) scalar field, (h) meaningless,
 - ${\rm (i)\ vector\ field,\ (j)\ meaningless,\ (k)\ meaningless,\ (l)\ scalar\ field}$
 - # 22 these remaining three problems are posted handwritten
 - # 24
 - # 28