Section $13.3 \# 6 f(x, y)=x e^{y}+K$ is a potential for \vec{F}
\# 24 According to the picture is looks plausible that $\int_{C} \vec{F} \cdot d \vec{r}=0$ for every closed curve, and since the region is open and connected, it is plausible that \vec{F} is conservative.
\# 30 (a) D is open, (b) D is not connected, (c) D is not simply connected
\# 32 (a) D is not open because (b) D is not connected (c) D is not simply connected

Section 13.4 \# 4 (a) 0, (b) same \# 22 By Green's Theorem,
$\frac{1}{2 A} \int_{C} x^{2} d y=\frac{1}{2 A} \iint_{D} 2 x d A=\frac{1}{A} \iint_{D} x d A=$ average value of x $=\bar{x}$
similarily
$-\frac{1}{2 A} \int_{C} y^{2} d x=-\frac{1}{2 A} \iint_{D}-2 y d A=\frac{1}{A} \iint_{D} y d A=$ average value of $\mathrm{y}=\bar{y}$

