Answers to Even Exercises, Homework Set 12

Section 13.1\# 12 IV
\# 14 III
\# 16 I
\# 18 II
\# 30 III
\# 32 I
Section 13.2 \# $6 \cos (1)+\cos (2)-\sin (3)$ Note: $\cos (-x)=\cos (x)$

$$
\begin{aligned}
& \text { \# 26(a) } 0 \\
& \quad \# 28 m=2 r^{2} \text { and }(\bar{x}, \bar{y})=\left(\frac{r(\pi+2)}{8}, \frac{r(\pi+2)}{8}\right)
\end{aligned}
$$

\# 42 Since \vec{B} is tangent to any circle that lies in the plane perpendicular to the wire, $\vec{B}=|\vec{B}| \vec{T}$ where \vec{T} is the unit tangent to the circle C: $x=r \cos t, y=r \sin t$. Thus $\vec{B}=\mid \vec{B}\langle-\sin t, \cos t\rangle$. Thus $\int_{C} \vec{B} \cdot d \vec{r}=2 \pi r|\vec{B}|$. Ampere's Law states that $\int_{C} \vec{B} \cdot d \vec{r}=\mu_{0} I$, so $|\vec{B}|=\mu_{0} I /(2 \pi r)$.

