Answers to Even Exercises, Homework Set 12

```
Section 13.1# 12 IV
# 14 III
# 16 I
# 18 II
# 30 III
```

32 I

Section 13.2 # 6 $\cos(1) + \cos(2) - \sin(3)$ Note: $\cos(-x) = \cos(x)$

- # 26(a) 0 # 28 $m = 2r^2$ and $(\bar{x}, \bar{y}) = \left(\frac{r(\pi+2)}{8}, \frac{r(\pi+2)}{8}\right)$
 - # 42 Since \vec{B} is tangent to any circle that lies in the plane perpendicular to the wire, $\vec{B} = |\vec{B}|\vec{T}$ where \vec{T} is the unit tangent to the circle C: $x = r \cos t$, $y = r \sin t$. Thus $\vec{B} = |\vec{B}\langle -\sin t, \cos t \rangle$. Thus $\int_C \vec{B} \cdot d\vec{r} = 2\pi r |\vec{B}|$. Ampere's Law states that $\int_C \vec{B} \cdot d\vec{r} = \mu_0 I$, so $|\vec{B}| = \mu_0 I/(2\pi r)$.