Section $10.3 \# 30$ curve a is $\kappa(x)$, and curve b is $f(x)$, so the red curve is the curvature of the blue one.

Section $10.4 \# 6 \vec{v}(t)=<e^{t}, 2 e^{2 t}>$ and $\vec{a}(t)=<e^{t}, 4 e^{2 t}>$, so $\vec{v}(0)=<1,2>$ and $\vec{a}(0)=<1,4>$

\#8 $\vec{v}(t)=<1,-2 \sin (t), \cos (t)>$ and $\vec{a}(t)=<0,-2 \cos (t),-\sin (t)>$, so $\vec{v}(0)=<1,0,1>$ and $\vec{a}(0)=<0,-2,0\rangle$. (Notice in this case that $\vec{a}(0) \perp \vec{v}(0))$

\#14 $\vec{v}(t)=(2 t+1) \vec{i}+3 t^{2} \vec{j}+4 t^{3} \vec{k}$ and $\vec{r}(t)=\left(t^{2}+t\right) \vec{i}+\left(t^{3}+1\right) \vec{j}+\left(t^{4}-1\right) \vec{k}$ \#20 If $\left|\vec{r}^{\prime}(t)\right|=C$ for all t, then writing it out in components, we get:

$$
\sqrt{\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}}=C
$$

which implies that

$$
\left(x^{\prime}(t)\right)^{2}+\left(y^{\prime}(t)\right)^{2}+\left(z^{\prime}(t)\right)^{2}=C .
$$

Taking the derivative of both sides, we get:

$$
2 x^{\prime} x^{\prime \prime}+2 y^{\prime} y^{\prime \prime}+2 z^{\prime} z^{\prime \prime}=0
$$

which is the same as

$$
2 \vec{v} \cdot \vec{a}=0
$$

Thus the velocity and acceleration are always perpindicular to one another.

Section 10.5\# 12 V
\# 14 III
\# 16 VI

