Answers to Even Exercises, Homework Set 11

- Section 10.3 #30 curve a is $\kappa(x)$, and curve b is f(x), so the red curve is the curvature of the blue one.
- Section 10.4 #6 $\vec{v}(t) = \langle e^t, 2e^{2t} \rangle$ and $\vec{a}(t) = \langle e^t, 4e^{2t} \rangle$, so $\vec{v}(0) = \langle 1, 2 \rangle$ and $\vec{a}(0) = \langle 1, 4 \rangle$

#8 $\vec{v}(t) = <1, -2\sin(t), \cos(t) > \text{and } \vec{a}(t) = <0, -2\cos(t), -\sin(t) >,$ so $\vec{v}(0) = <1, 0, 1 > \text{and } \vec{a}(0) = <0, -2, 0 >.$ (Notice in this case that $\vec{a}(0) \perp \vec{v}(0)$)

#14 $\vec{v}(t) = (2t+1)\vec{i}+3t^2\vec{j}+4t^3\vec{k}$ and $\vec{r}(t) = (t^2+t)\vec{i}+(t^3+1)\vec{j}+(t^4-1)\vec{k}$ #20 If $|\vec{r}'(t)| = C$ for all t, then writing it out in components, we get:

$$\sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} = C$$

which implies that

$$(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2} = C$$

Taking the derivative of both sides, we get:

$$2x'x'' + 2y'y'' + 2z'z'' = 0$$

which is the same as

$$2\vec{v}\cdot\vec{a}=0$$

Thus the velocity and acceleration are always perpindicular to one another.

Section 10.5# 12 $\,\mathrm{V}$

14 III # 16 VI