Answers to Even Exercises, Homework Set 10

Section 10.1 \#2 domain $=(-3,-2) \cup(-2,3)$
\#10 This is the same as $x=y^{2}, z=2$, so the graph is

\#18 II
\#20 I
\#22 III
\#24 $\vec{r}(t)=<\sin (t), \cos (t), \sin ^{2}(t)>$ satisfies:
(1) $z=x^{2}$ because subbing in for $\mathrm{x}(\mathrm{t})$ and $\mathrm{z}(\mathrm{t})$ given above we get $\sin ^{2}(t)=(\sin (t))^{2}$
(2) $x^{2}+y^{2}=1$ because again subbing in we get $(\sin (t))^{2}+$ $(\cos (t))^{2}=1$

The curve is shown as:

\#38 Do not collide, but do intersect at $(2,4,8)$ and $(1,1,1)$.
Section 10.2 \# 2 (a)

(b) $\frac{d \vec{r}}{d t}(1)=<2,1>$, and $\frac{\vec{r}(1.1)-\vec{r}(1)}{.1}=<2.1,1>$. These vectors are very close to one another because the second one is the difference quotient with $h=.1$, and the first is the limit of the difference quotient as $h \rightarrow 0$. Since $h=.1$ is near zero, the resulting vectors are very close.

$\# 32 \quad \frac{7}{3} \vec{i}+\frac{16}{15} \vec{j}-\frac{3}{\pi} \vec{k}$
\# 46 If $\vec{r}(t)$ and $\vec{r}^{\prime}(t)$ are always orthogonal, then their dot product is zero for all $t: \vec{r}(t) \cdot \vec{r}^{\prime}(t)=0$. If we werite this out, we see:

$$
x(t) x^{\prime}(t)+y(t) y^{\prime}(t)+z(t) z^{\prime}(t)=0
$$

this is the same as:

$$
\frac{d}{d t}\left[\frac{1}{2}(x(t))^{2}+\frac{1}{2}(y(t))^{2}+\frac{1}{2}(z(t))^{2}\right]=0
$$

If we integrate the last equation, we get:

$$
x^{2}+y^{2}+z^{2}=C
$$

for some constant C , which is the equation of a sphere at the origin. This shows that every point on our curve $<x(t), y(t), z(t)>$ lies on a sphere centered at the origin.

