Chapter 11 \#4 This is a circular paraboloid with vertex $(0,2,0)$, and axis parallel (but not equal to) the z-axis.

\#10 Approaching the origin along the line $y=0$ we get that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{x^{2}+2 y^{2}}=\lim _{x \rightarrow 0} \frac{0}{2 x^{2}}=\lim _{x \rightarrow 0} 0=0
$$

And approaching along the line $y=x$ we get:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y}{x^{2}+2 y^{2}}=\lim _{x \rightarrow 0} \frac{2 x^{2}}{4 x^{2}}=\lim _{x \rightarrow 0} 1 / 2=1 / 2
$$

Since we get two different values for the limit by approaching $(0,0)$ from two different directions, the limit as $(x, y) \rightarrow(0,0)$ of $\frac{2 x y}{x^{2}+2 y^{2}}$ does not exist!
\#12 Linear approximation: $T(x, y) \approx 3.5(x-6)-3(y-4)+80$,so we can approximate $T(5,3.8) \approx 3.5(-1)-3(-.2)+80=80-2.9=$ 77.1
\#34 max $1.7 \mathrm{~cm}^{2}$ error in the area of the triangle, and the max error in the length of the hypotenuse is $3.4 / 13 \mathrm{~cm}$.
\# 40 Area of the triangle is $(1 / 2) x y \sin (\theta)$. Using the given info we have the rate of change of the area is $17.5+25 \sqrt{3} \mathrm{in}^{2} / \mathrm{s}$.
\# 56 The absolute maximum value of f on D is $f(0, \pm 1)=2 e^{-1}$, and the absolute minimum value of f on D is $f(0,0)=0$
\# 64 The dimensions of a package with largest volume possible that has girth $=108$ are $36 \times 18 \times 18$.

