Answers to Even Exercises, Review problems from Ch 9 and 10

Chapter 9 \#2

$$
\begin{array}{rl}
\# 4 & (\text { a) }<11,-4,-1>,(\mathrm{b}) \sqrt{14},(\mathrm{c})-1,(\mathrm{~d})<-3,-7,-5>,(\mathrm{e}) \\
& 3 \sqrt{35},(\mathrm{f}) 18,(\mathrm{~g}) \overrightarrow{0},(\mathrm{~h})<33,-21,6>,(\mathrm{i}) \frac{1}{\sqrt{6}},(\mathrm{j})<-1 / 6,-1 / 6,1 / 3> \\
& (\mathrm{k}) 96^{\circ} \\
\# 6 & \frac{1}{\sqrt{54}}<7,2,-1>\text { and } \frac{1}{\sqrt{54}}<-7,-2,1> \\
\# 12 & 87 \text { joules } \\
\# 18 & x+4 y-3 z=6 \\
\# 20 & 6 x+9 y-z=26 \\
\# 24 & \text { (a) }<1,1,-1>\cdot<2,-3,4>\neq 0, \text { and }<1,1,-1>\times< \\
& 2,-3,4>\neq 0, \text { (b) } 58^{\circ}
\end{array}
$$

$$
\# 30
$$

\# 34 Circular paraboloid opening in the direction of the positive x -axis.

\# 40 (a) This is the plane that is perpindicular to the xy-plane and intersects the xy-plane in the line $y=x$. (b) This is the cone with vertex at the origin and opening along the z -axis.
\# 42 In cylindrical: $r^{2}=4$. In spherical: $\rho \sin (\phi)=2$.
\# 44 This is the part of the solid sphere of radius 1 centered at $(0,0,1)$ that lies in the first octant and lies above the cone $\phi=\pi / 6$.

Chapter 10 \# 2 (a) Domain is $(-1,0) \cup(0,2]$, (b) $\langle\sqrt{2}, 1,0\rangle$, (c) $\left\langle\frac{-1}{2 \sqrt{2-t}}, \frac{t e^{t}-e^{t}+1}{t^{2}}, \frac{1}{1+t}\right\rangle$ \#6 (a) $(15 / 8,0,-\ln 2)$, (b) $x=1-3 t, y=1+2 t, z=t$, (c) $3 x-$ $2 y-z=1$
\#8 $\frac{2}{27}\left(13^{3 / 2}-8\right)$
\#10 $\vec{r}(s)=\left\langle 1+\frac{1}{\sqrt{3}} s,\left(1+\frac{1}{\sqrt{3}} s\right) \sin \left(\ln \left(1+\frac{1}{\sqrt{3}} s\right)\right),\left(1+\frac{1}{\sqrt{3}} s\right) \cos (\ln (1+\right.$ $\left.\left.\left.\frac{1}{\sqrt{3}} s\right)\right)\right\rangle$
\# $12 \kappa(0)=4 / 9$
\# 16 (a) and (c) are below, (b) $\lim _{h \rightarrow 0} \frac{\vec{r}(3+h)=\vec{r}(3)}{h}=\vec{v}(3)=\vec{r}^{\prime}(3)$

$\mathrm{T}(3)$ is tangent to the curve at $\mathrm{r}(3)$ and has length
\# $18 \vec{r}(t)=\left\langle t^{3}+t, t^{4}-t, 3 t-t^{3}\right\rangle$
$\# 20 a_{T}=\frac{4 t}{\sqrt{4 t^{2}+5}}$, and $a_{N}=\frac{2 \sqrt{5}}{\sqrt{4 t^{2}+5}}$

