
Homework Set # 6 – Math 435 – Summer

1. Solve uxx + uyy = 0 on the rectangle 0 < x < 2, 0 < y < 3, with boundary conditions

ux(0, y) = 0

ux(2, y) = 0

u(x, 0) = 0

u(x, 3) = 3x

Solution:

We can seperate variables to obtain u(x, y) = X(x)Y (y) where X ′′ = λX and Y ′′ = −λY ,
and we have boundary conditions X ′(0) = X ′(2) = 0 and Y (0) = 0. Solving the equation for
X, we consider the three cases:

λ = 0 Then X(x) = c1x + c2. Since X ′ = c1 the b.c.’s imply that c1 = 0, so we get that

X = c2

for any constant is possible.

λ > 0 Then λ = β2 for some β > 0. This yields the general solution X = c1e
βx + c2e

−βx. Then
X ′ = β(c1e

βx − c2e
−βx). Applying the b.c.’s gives c1 = c2 and βc1(e

2β − e−2β) = 0. The
only way this can be true is if c1 = 0 which yields the trivial solution X = 0.

λ < 0 Now, we can write λ = −β2 for some β > 0. This yield the general (real) solution
X = c1 cos(βx)+c2 sin(βx). Thus X ′ = β(−c1 sin(βx)+c2 cos(βx)). Applying the b.c.’s
gives c2 = 0 and 2β = nπ or β = nπ

2 . Thus

X(x) = C1 cos
(nπx

2

)

.

Now we need to find the corresponding solutions Y .

λ = 0 Thus Y (y) = c1y + c2. Applying the BC Y (0) = 0 gives that c2 = 0 or Y (y) = c1y. So
the solution u(x, y) corresponding to λ = 0 is

u0(x, y) = Cy

λ < 0 Recall from above that this implies that λ = −n2π2

4 . Thus we want to solve Y ′′ = n2π2

4 Y ,
which has general solution Y = c1 cosh

(

nπy
2

)

+c2 sinh
(

nπy
2

)

. Applying the BC Y (0) = 0,
we get c1 = 0, so

Y = c sinh
(nπy

2

)

.

Our corresponding solutions un(x, y) are then

un(x, y) = cn cos
(nπx

2

)

sinh
(nπy

2

)

.

Finally, we get our full solution by the superposition principle

u(x, y) = C0y +
∞

∑

n=1

cn cos
(nπx

2

)

sinh
(nπy

2

)

.



We can finally impose the final boundary condition that u(x, 3) = 3x:

(x, 3) = 3C0 +
∞

∑

n=1

cn cos
(nπx

2

)

sinh

(

3nπ

2

)

= 3x .

Using Fourier coefficients we have

C0 =
1

6
A0 =

1

6

∫ 2

0
3x dx =

1

4
x2|20 = 1

and

sinh

(

3nπ

2

)

cn =

∫ 2

0
3x cos(nπx/2) dx =

6x

nπ
sin(nπx/2)|20 −

∫ 2

0

6

nπ
sin(nπx/2) dx

continuing we see

sinh

(

3nπ

2

)

cn =
12

n2π2
cos(nπx/2)|20 =

12

n2π2
((−1)n − 1) .

2. Consider Laplace’s equation on the disk x2 + y2 < 9 with boundary condition u(x, y) = x2

3
when x2 + y2 = 9.

(a) Without solving the equation, give the value of u at the center of the disk.

(b) Solve the equation.

Solution:

(a) Using the Mean Value Principle, we know that u at the center is equal to the average
value of u around the boundary, so in polar coordinates we find

u(0, θ) =
1

2π

∫ 2π

0
3 cos2(θ)dθ

Solving by using the identity cos2(θ) = 1+cos(2θ)
2 , we get

u(0, θ) =
3

2
.

(NOTE: we could also find the boundary integral as a line integral. In this case we
parametrize the boundary curve by s(θ) =< 3 cos θ, 3 sin θ > wtih 0 ≤ θ ≤ 2π. Then

∫

∂D

h dS =

∫ 2π

0
h(s(θ))|s′(θ)|dθ =

∫ 2π

0
3 cos2(θ)3 dθ

and the average value is the value of this integral divided by the circumference C = 6π
which yields the same result.)

(b) If we follow the seperation of variables process as in class (or the book) for polar coor-
dinates, and rule out any part of the solution that goes to infinity at r = 0, we have

u(r, θ) = C0 +
∞

∑

n=1

rn(dn cos(nθ) + en sin(nθ) .



Applying our boundary condition gives

u(3, θ) = C0 +
∞

∑

n=1

3n(dn cos(nθ) + en sin(nθ) = 3 cos2(θ) =
3 + 3 cos(2θ)

2
.

Now, we can see that C0 = 3
2 and 9d2 = 3

2 or d2 = 1
6 , while dn = 0 for all n 6= 2 and

en = 0 for all n. Thus the solution is

u(r, θ) =
3

2
+

1

6
r2 cos(2θ) .

3. Use separation of variables to derive the solution u(r, θ) to Laplace’s equation on the annulus
1 < r < 3 with boundary conditions:

u(1, θ) = sin2(θ)

u(3, θ) = 0

Solution: Again, follow the derivation via separation of variables we did in class (or in the
book), only this time, since r = 0 is NOT included in our domain, we arrive at solutions of
the form

u(r, θ) = C0 + C1 ln r +
∞

∑

n=1

(anrn + bnr−n)(dn cos(nθ) + en sin(nθ) .

This time, r = 0 is not part of our domain, so we need not worry about the behavoir of our
solution at r = 0. If we first apply the boundary condition at r = 3, we see

u(3, θ) = C0 + C1 ln 3 +

∞
∑

n=1

(an3n + bn3−n)(dn cos(nθ) + en sin(nθ) = 0 .

Thus, C0 + C1 ln 3 = 0 and an3n + bn3−n = 0 for all n. We can then rewrite our solution
accordingly as

u(r, θ) = C0(1 −
ln r

ln 3
) +

∞
∑

n=1

(rn − 32nr−n)(dn cos(nθ) + en sin(nθ) .

Now, applying the b.c. at r = 1 we have

u(r, θ) = C0 +
∞

∑

n=1

(1 − 32n)(dn cos(nθ) + en sin(nθ) = sin2(θ) =
1 − cos(2θ)

2
.

By sight, we can see that C0 = 1
2 and d2 = −1

2(1−32n)
, while dn = 0 if n 6= 2 and en = 0 for all

n. This gives a solution of

u(r, θ) =
1

2

(

1 −
ln r

ln 3

)

+
r2 − 81r−2

160
cos(2θ) .

4. Consider the steady-state temperature distribution inside a spherical ball (r < 4), whose outer
boundary sphere is held at a constant temperature of 10 degrees. According to the maximum



principle for Laplace’s equation in 3D, what can you conclude about u(x, y, z) inside the ball?
What does the minimum principle tell you?

solution The maximum principle says that u(x, y, z) ≤ 10 for all (x, y, z) in the interior of
the ball, and the minimum principle says thatu(x, y, z) ≥ 10 for all (x, y, z) in the interior of
the ball. The maximum and minimum principles together tell us that u(x, y, z) = 10 for all
points (x, y, z) in the ball.

5. Problem 5 from the exercises for section 7.1 in Strauss.

Solution:

Suppose that u is harmonic and ∂u
∂n

= h on ∂D and that w is any real-valued function on D.
Let v = w − u, or w = u + v. Subbing v into E, we get

E[w] =
1

2

∫ ∫ ∫

D

|∇w|2 dx −

∫ ∫

∂D

h[w] dS .

Now, expanding w = u + v, we have

E[w] =
1

2

∫ ∫ ∫

D

(

|∇u|2 + |∇v|2 + 2∇v · ∇u
)

dx −

∫ ∫

∂D

h[u] dS −

∫ ∫

∂D

h[v] dS .

By Green’s first identity for u and v,

∫ ∫ ∫

D

∇v · ∇u dx =

∫ ∫

∂D

v
∂u

∂n
dS −

∫ ∫ ∫

D

v∆u dx

and since ∂u
∂n

= h on the boundary,

∫ ∫ ∫

D

∇v · ∇u dx =

∫ ∫

∂D

vh dS .

Subbing this in above, we have

E[w] =
1

2

∫ ∫ ∫

D

|∇v|2 dx +

(

1

2

∫ ∫ ∫

D

|∇u|2 −

∫ ∫

∂D

uh dS

)

or

E[w] =
1

2

∫ ∫ ∫

D

|∇v|2 dx + E[u] .

This implies that
E[w] ≥ E[u]

and in fact that if u 6= w,
E[w] > E[u] .

Thus, the harmonic function satisfying the given Neumann boundary condition is the function
that minimizes Eh over all real-valued functions on D.

6. Show that the Green’s function is unique for a given domain. (hint: take the difference of
two of them and use the proof that solutions to Laplace’s equation with Dirichlet b.c.’s are
unique)

Solution:



Recall that the solution to Laplace’s equation with Dirichlet boundary conditions is unique.
Suppose that we have two different green’s functions on D: G1(x, x0) and G2(x, x0). Then
by the definition of a Green’s function we have harmonic functions H1 and H2 such that
G1 = v + H1 and G2 = v + H2 where v = −1

4π|x−x0|
. Notice then that if we let g = G1 − G2 =

H1 − H2, then we get that ∆g = 0 on all of D and g = 0 on ∂D. By the fact that solutions
to Laplace’s equation with Dirichlet b.c.’s are unique, it must be that g = 0 on all of D. This
implies that G1 = G2.

7. The Neumann function N(x, y) for a domain D is defined exactly like the Green’s function
in Section 7.3 except that (ii) is replaced by the Neumann boundary condition

∂N

∂n
= 0

for x ∈ ∂D. In this case, we get the analogous statement to Theorem 7.3.1: If N(x, x0) is the
Neumann function, then the solution of the Dirichlet problem is given by the formula

u(x0) = −

∫ ∫

∂D

N(x, x0)
∂u

∂n
dS .

Show this is true.

Proof:

The representation formula for harmonic functions is

u(x0) =

∫ ∫

∂D

(

u
∂v

∂n
− v

∂u

∂n

)

dS

where v(x) = −1
4π|x−x0|

. Writing N(x, x0) = v + H, where H is harmonic in all of D, and
applying Green’s 2nd identity, we have

0 =

∫ ∫

∂D

(

u
∂H

∂n
− H

∂u

∂n

)

dS .

Adding our two expressions together, we have

u(x0) =

∫ ∫

∂D

(

u
∂N

∂n
− N

∂u

∂n

)

dS .

Now, since we are requiring that ∂N
∂n

= 0 on the boundary, we get

u(x0) = −

∫ ∫

∂D

N
∂u

∂n
dS .

8. Use Green’s functions to solve
∆u = 0

inside the ball of radius r = 3, if we assume that u = x+y
3 on the boundary of the ball (the

sphere of radius 3). Notice that the Green’s function expression on a sphere that we talked
about in class cannot be used to find the value of u at the origin (why?). How could we find
the value of u at the origin? (note: you don’t actually have to find the value, just describe
how to)


