
Homework Set # 4 – Math 435 Summer SOLUTIONS

1. Solve the heat equation (i.e. - the diffusion equation) 4uxx = ut on a rod of length 2 if
u(x, 0) = sin(πx

2 ) and u(0, t) = 0 = u(2, t).

Solution:

We are solving the heat equation on a finite interval (0, 2), with dirichlet boundary conditions,
so we can use the general solution to this boundary value problem that we derived in class
via seperation of variables:

u(x, t) =
∞
∑

n=1

Ane
−n2π2t sin(nπx/2) .

In order to finish, we need to determine the values of the An’s. Since

u(x, 0) =
∞
∑

n=1

An sin(nπx/2) = sin(πx/2)

we can take A1 = 1 and An = 0 for all n 6= 1. Thus

u(x, t) = e−π2t sin(πx/2) .

2. Solve the wave equation 3uxx = utt for a clamped string of length l = 1 (so u(0, t) = 0 =
u(1, t)) such that u(x, 0) = 2 sin(πx) cos(πx) and ut(x, 0) = 0. [hint: use a double angle
identity from trig]

Again, we are solving the wave equation on a finite length interval (0, 1) with dirichlet bound-
ary conditions, so since we have already solved this general boundary value problem, we can
use the solution we obtained via seperation of variables:

u(x, t) =

∞
∑

n=1

(

an cos(nπ
√

3t) + bn sin(nπ
√

3t)
)

sin(nπx) .

We need to determine the values of the an’s and bn’s in order to have solved our problem
completely. Since

u(x, 0) =
∞
∑

n=1

an sin(nπx) = 2 sin(πx) cos(πx) = sin(2πx)

we see that we can take a2 = 1 and an = 0 for n 6= 2. This gives

u(x, t) = cos(2π
√

3t) sin(2πx) +
∞
∑

n=1

bn sin(nπ
√

3t) sin(nπx) .

It follows that

ut(x, t) = −2π
√

3 sin(2π
√

3t) sin(2πx) +
∞
∑

n=1

nπ
√

3bn cos(nπ
√

3t) sin(nπx) ,

and

ut(x, 0) =

∞
∑

n=1

nπ
√

3bn sin(nπx) = 0 .

This tells us that we can take bn = 0 for all n. Finally, we have

u(x, t) = cos(2π
√

3t) sin(2πx) .



3. Strauss Exercise 4, pg 87 (solve by seperation of variables, in the same way that we did in
class)

Letting u(x, t) = X(x)T (t) and subbing in, we have

T ′′ + rT ′

c2T
=
X ′′

X
= λ

so that

X ′′ = λX

T ′′ + rT ′ = λc2T .

We again have Dirichlet boundary conditions, so the solution for X is only nontrivial if
λ = −β2 < 0, and we get X(x) = c1 cos(βx) + c2 sin(βx). Applying the boundary conditions,
we have X(0) = c1 = 0 and X(l) = c2 sin(βl) = 0. In order to get a nontrivial solution, we
then need that βl = nπ for some n ∈ Z, or β = nπ/l. This tells us that we have a solution
Xn for each integer n, and

Xn(x) = cn sin(nπx/l) .

Now we can solve for the corresponding functions Tn. We can try Tn(t) = ekt. This gives

k2 + rk − c2λ = 0

which has as it’s solutions

k =
−r ±

√
r2 + 4c2λ

2
=

−r ±
√

r2 − 4c2n2π2/l2

2
.

The types of solutions we get then depend on whether or not k is real or complex, which is
determined by the sign of r2−4c2n2π2/l2. Since we are given that 0 < r < 2πc/l that implies
that r2 < 4π2c2/l2 and since n ≥ 1, we get r2 < 4π2c2n2/l2, or r2 − 4c2n2π2/l2 < 0. Hence k
is complex and the solutions are

Tn(t) = e−rt/2

(

an cos(

√

4c2n2π2/l2 − r2

2
t) + bn sin(

√

4c2n2π2/l2 − r2

2
t)

)

.

This gives us, by the linearity of the PDE and the superposition principle, thatthe general
solution is

u(x, t) =

∞
∑

n=1

e−rt/2

(

an cos(

√

4c2n2π2/l2 − r2

2
t) + bn sin(

√

4c2n2π2/l2 − r2

2
t)

)

sin(nπx/l) .

Now to determine the coefficients, we note that

u(x, 0) =

∞
∑

n=1

an sin(nπx/l) = φ(x) ,

and

ut(x, 0) =
∞
∑

n=1

(

−r
2
an +

√

4c2n2π2/l2 − r2

2
bn

)

sin(nπx/l) = ψ(x) .

so that the an’s and bn’s can be found by the method Fourier sine coefficients.

[NOTE: the neat thing about this problem is that you can directly see that this really does
give you a damped wave - because of the factor e−rt/2 multiplying onto every term, as t→ ∞,
u(x, t) → 0. This is quite different from the solution to the nondamped wave equation, where
waves perpetuate indefinitely, with no decrease in amplitude.]



4. Straus, Exercise 6, pg 89.

We let u(x, t) = X(x)T (t) and substitute in the PDE tut = uxx + 2u. This yields tXT ′ =
X ′′T + 2XT , which can be separated into the two ODE’s:

tT ′

T
− 2 = λ

and
X ′′

X
= λ .

Since we have homogeneous Dirichlet Boundary conditions, and we are working with our
usual ODE for X(x), we know that Xn(x) = Cnsin(nx) for each n in the integers are all the
possible solutions. Now solving the ODE for T , we have

tT ′ − (2 + λ)T = 0,

or

T ′ − 2 + λ

t
T = 0 .

Separating variables, we get:
T ′

T
= (λ+ 2)/t

so integrating both sides yields

ln |T | = (λ+ 2)ln|t| + C

or
T = Ce(λ+2)ln|t| = Ctλ+2

Since there is a value of λ for each integer n by

λ = −n2

, we have
Tn(t) = Dnt

−n2+2 .

Thus

u(x, t) =

∞
∑

n=1

Ant
(−n2+2)sin(nx)

is the general solution to our BVP.

Now, applying the inital condition we see

u(x, 0) = 0

*regardless* of our choices of the values for An’s! So ANY values of An’s work and we get
infinitely many possible solutions to the IBVP. This problem is not well-posed.

5. Strauss, exercise 1, page 92

We have kX ′′T = XT ′ , so that
X ′′

X
=

T ′

kT
= λ



. We know that the general solution for X is X = c1e
rt + c2e

−rt, where r = ±
√
λ. We can

first check the case where λ > 0, or λ = β2. This yields X(x) = c1e
βx + c2e

−βx and we
can apply the boundary conditions X(0) = 0 and X ′(l) = 0. We then have c1 = −c2 and
c1β(eβl + e−βl) = 0. In order for the latter to be true, we need c1 = 0 and so we have only
the trivial solution X(x) = 0 for all x.

Now we can check the case for λ = 0. This gives X(x) = cx+ d, and applying the boundary
conditions we have d = 0 and c = 0, so that again we get only the trivial solution.

Finally we look at the case λ < 0 or λ = −β2. This yields X(x) = c1 cos(βx) + c2 sin(βx).
Applying X(0) = 0 gives c1 = 0. Applying next that X ′(l) = 0 gives c2β cos(βl) = 0 so that

in order to obtain something nontrivial, we must take βl = (2n−1)π
2 , or β = (2n−1)π

2l . We then

see we have an infinite family of solutions Xn(x) = cn sin
(

(2n−1)πx
2l

)

.

We can proceed to find the solutions Tn(t) associated to each Xn(x). For a fixed n, λ =

− (2n−1)2π2

4l2
, so the equation for Tn is

T ′
n = −k(2n − 1)2π2

4l2
Tn

and the solution is Tn(t) = Dne
− k(2n−1)2π

2
t

4l2 . So, for each n, we have a solution un(x, t) =

Ane
−

k(2n−1)2π
2

t

4l2 sin
(

(2n−1)πx
2l

)

to the boundary value problem, and the general solution is then

(by the superposition principle and the fact that our PDE is linear)

u(x, t) =
∞
∑

n=1

Ane
− k(2n−1)2π

2
t

4l2 sin

(

(2n − 1)πx

2l

)

.

We are given no initial condition for this problem, so we are done!

6. Show that IF U(x) is a (steady-state) solution to Uxx = 0 on (0, l) with

U(0) = g

U(l) = h

for some fixed constants g, h,and IF ũ is a solution to ũxx = ũt on (0, l) with

ũ(0, t) = 0

ũ(l, t) = 0

where ũ(x, 0) = f(x) − U(x), THEN u(x, t) = ũ(x, t) + U(x) solves uxx = ut where

u(0, t) = g

u(l, t) = h

and u(x, 0) = f(x).

[**NOTE: The point of this problem is that it allows us to solve BVP’s with nonhomogeneous
boundary conditions by building a solution from the homogeneous b.c. problem and the
corresponding steady-state problem... Notice that the seperation of variables technique breaks
down if we have inhomogeneous b.c.’s]



7. Solve problem 8 from section 5.1 of Strauss using exercise 6 above.

Solving the steady state system for U , we get

∫

Uxx dx =

∫

0 dx

implies
Ux = C1

and then integrating again, we get

U(x) = C1x+ C2 .

Applying the boundary conditions U(0) = 0 and U(1) = 1 results in U(x) = x.

Now, we need to find the solution to the corresponding homogeneous problem ũ. Since it
satisfies ũt = ũxx on (0, 1) with ũ = φ(x) − x and ũ(0, t) = 0 = ũ(1, t), we know that the
solution can be found by seperation of variables. Since we have Dirichlet boundary conditions
and it’s the heat equation, we get

ũ(x, t) =

∞
∑

n=1

An sin(nπx)e−n2π2t .

Now solving for the An’s can be done by the standard means of finding Fourier sine series
coefficients, since

ũ(x, 0) =

∞
∑

n=1

An sin(nπx) = φ(x) − x .

This means that

An =

∫ 1

0
(φ(x) − x)) sin(nπx) dx

Since

φ(x) =

{

5x
2 for 0 < x < 2/3

3 − 2x for 2/3 < x < 1

we get

φ(x) − x =

{

3x
2 for 0 < x < 2/3

3 − 3x for 2/3 < x < 1

so

An =

∫ 2/3

0

3x

2
sin(nπx) dx+

∫ 1

2/3
(3 − 3x) sin(nπx) dx .

Now if we use integration by parts, we can find the generic integral

∫ b

a
x sin(nπx) dx = − x

nπ
cos(nπx)

∣

∣

b

a
+

∫ b

a

1

nπ
cos(nπx dx

=
1

nπ
[−b cos(nπb) + a cos(nπa)] +

1

n2π2
[sin(nπb) − sin(nπa)]



which we can use to get An. Subbing in we get

An =
3

2

(

− 2

3nπ
cos(2nπ/3) +

1

n2π2
sin(2πn/3)

)

− 3

nπ
[cos(nπ) − cos(2nπ/3)]

− 3

(

1

nπ
(− cos(nπ) +

2

3
cos(2nπ/3)) − 1

n2π2
sin(2nπ/3)

)

.

This simplifies to

An =
9

2n2π2
sin(2nπ/3) .

Plugging these coefficients into the expansion for ũ defines ũ completely. Finally we get
u(x, t) = ũ+ x to be the solution to our inhomogeneous problem.

8. A string (with density ρ = 1 and tension T = 4) with fixed ends at x = 0 and x = 10 is hit
by a hammer so that u(x, 0) = 0 and

∂u

∂t
(x, 0) =

{

V if x ∈ [−δ + 5, δ + 5]

0 otherwise .

Find the height of the string u(x, t) for all x ∈ (0, 10) and all t > 0. (Your answer WILL be
a bit messy...)

Solution:

Again, we have the wave equation with dirichlet boundary conditions, so that the solution
looks like

u(x, t) =

∞
∑

n=1

(An sin(2nπt/10) +Bn cos(2nπt/10)) sin(nπx/10) .

In order to satisfty our initial conditions, we note that

u(x, 0) =
∞
∑

n=1

Bn sin(nπx/10) = 0 ,

which tells us that Bn = 0 for all n, and

u(x, t) =

∞
∑

n=1

An sin(nπt/5) sin(nπx/10) .

Now for the inital velocity:

ut(x, t) =

∞
∑

n=1

nπAn

5
cos(nπt/5) sin(nπx/10) ,

so

ut(x, 0) =
∞
∑

n=1

nπAn

5
sin(nπx/10) .

Thus we are expanding our initial velocity in a fourier sine series, so the coefficients are

nπ

5
An =

1

5

∫ 10

0
ut(x, 0) sin(nπx/10) dx



and using the definition of ut(x, 0) we get

nπ

5
An =

1

5

∫ 5+δ

5−δ
V sin(nπx/10) dx .

Doing the computation gives

An =
10V

n2π2
[cos((5 − δ)nπ/10) − cos((5 + δ)nπ/10)] .

To this point is fine, but we could also simplify further using the fact that

cos(a+ b) = cos(a) cos(b) − sin(a) sin(b) .

This yields

An =
20V

n2π2
sin(5nπ/10) sin(δnπ/10)

which we can sub into

u(x, t) =

∞
∑

n=1

An sin(nπt/5) sin(nπx/10)

to get our final solution u.

9. Problems 5a and 6a from section 5.1 of Strauss, relying on the FS (sine) we found for f(x) = x
on (0,l) in class (and in the book).

(5a) Since x =
∑∞

n=1
(−1)n+12l

nπ sin(nπx/l), we can integrate the series term-by-term to get

x2

2
=

∞
∑

n=1

(−1)n2l2

n2π2
cos(nπx/l) + C .

So, it just remains to determine C. Note that this gives us a Fourier cosine sereis for x2

2 ,
so the C should be the same as the 1

2A0 of the cosine series. Thus, since

A0 =
2

l
2

∫ l

0

x2

2
dx = l23

we get C = l26, and

x2

2
=
l2

6
+

∞
∑

n=1

(−1)n2l2

n2π2
cos(nπx/l) .

(6a) Now, we can do basically the same thing to get a Fourier series expansion for x3. Inte-

grating the series for x2

2 term-by-term gives

x3

6
=
l2

6
x+

∞
∑

n=1

(−1)n2l3

n3π3
sin(nπx/l) + C .

Thus

x3 = l2x+

∞
∑

n=1

(−1)n12l3

n3π3
sin(nπx/l) + C .



Again, we still need to determine C, but subbing in zero to both sides shows us that
C = 0. We aren’t quite done because the l2x term makes the right hand side not quite
a Fourier series. If we sub in the sine series for x, we get

x3 = l2
∞
∑

n=1

(−1)n+12l

nπ
sin(nπx/l) +

∞
∑

n=1

(−1)n12l3

n3π3
sin(nπx/l) ,

or

x3 =
∞
∑

n=1

(−1)n
(−2l3

nπ
+

12l3

n3π3

)

sin(nπx/l) .

10. Problem 15 section 5.2 of Strauss.

Since | sin(x)| is an even function, the sine coeffients for the full Fourier series over (−π, π)
will be zero. This is because determination of these coefficients are obtained by integrating

1

π

∫ π

−π
| sin(x)| sin(nx) dx

and the fact that sin(nx) is an odd function and the product of an even and odd function is
again odd, tells us that this integral will be zero, regardless of the value of n.


