
1. The solution is u(x, t) = 1
2

(

ex+ct + ex−ct
)

+ 1
2c

∫ x+ct
x−ct sin(s) dx or

u(x, t) =
1

2

(

ex+ct + ex−ct
)

+
1

2c
(− cos(x + ct) + cos(x − ct))

2. To solve the PDE uxx − 3uxt − 4utt = 0, you can first factor the differential operator to see

(

∂

∂x
− 4

∂

∂t

) (

∂

∂x
+

∂

∂t

)

u = 0 .

Now you can either change variables according to the two different directions of characteristics
that arise from the two factors of the operator, or you can directly find a change of variable
so that ∂

∂ξ = ∂
∂x − 4 ∂

∂t and ∂
∂η = ∂

∂x + ∂
∂t . To be consistant with the way we solved the wave

equation in class, I will take the perspective of the characteristics.

Thinking of the first factor, it looks like a transport operator ∂
∂x −4 ∂

∂t , and the characteristics
for the associated transport equation would be given by the solution of the ode

dx

dt
=

1

−4
.

The solution gives the characteristics x = − t
4 + C, or x + t

4 = C. Thus we could set

ξ = x +
t

4
.

Similarly, the other factor gives the transport operator ∂
∂x + ∂

∂t , and it’s characteristics are
the solutions of

dx

dt
= 1 .

Thus, the characteristics are x − t = C, and we can take

η = x − t

.

Thus,
∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
=

∂

∂ξ
+

∂

∂η
.

And we have
∂

∂t
=

∂

∂ξ

∂ξ

∂t
+

∂

∂η

∂η

∂t
=

1

4

∂

∂ξ
− ∂

∂η
.

Subbing into our factors for our PDE operator we have

∂

∂x
− 4

∂

∂t
= 5

∂

∂η

and
∂

∂x
+

∂

∂t
=

5

4

∂

∂ξ
.

Thus the PDE transforms to
25

4
uξη = 0 .



We can divide both sides by 25
4 and then integrate with respect to η to get

uξ = f(ξ)

for some function f . Following with integration in ξ, we have

u = F (ξ) + G(η) ,

where F (ξ) =
∫

f(ξ) dξ. Finally, changing variables back to x and t, we get the general
solution to the original PDE is

u = F (x +
t

4
) + G(x − t) .

Now if we apply the initial conditions, we have:

u(x, 0) = F (x) + G(x) = φ(x)

and

ut(x, 0) =
1

4
F ′(x) − G′(x) = ψ(x) .

Solving for F ′ gives

F ′(x) =
4

5

(

φ′(x) + ψ(x)
)

and so

F (x) =
4

5
φ(x) +

4

5

∫ x

0
ψ(x) ds .

Now solving for G′ gives

G′(x) =
4

5

(

1

4
φ′(x) − ψ(x)

)

or

G(x) =
1

5
φ(x) − 4

5

∫ x

0
ψ(s) ds .

Finally, we can obtain the unique solution to the initial value problem

u(x, t) =

(

4

5
φ(x +

t

4
) +

1

5
φ(x − t)

)

+
4

5

∫ x+ t

4

x−t
ψ(s) ds .

3. The “damped wave equation” is given by

utt − c2uxx + rut = 0 .

Follow the basic outline of the proof of conservation of energy for the wave equation to show
that for the damped wave equation, the total energy decreases over time if r > 0.

Solution

∂

∂t

∫

1

2
ρ(ut)

2 dx =

∫

ρututt dx

=

∫

ρut(c
2uxx − rut) dx = −rρ

∫

(ut)
2 dx − [utux|∞−∞ − ρc2

∫

utxux dx

= −rρ

∫

(ut)
2 dx − T

2

∫

∂

∂t
(ux)2 dx

= −rρ

∫

(ut)
2 dx − ∂

∂t

∫ ∞

−∞

1

2
T (ux)2 dx



Thus, we can see that
∂KE

∂t
= −rρ

∫

(ut)
2 dx − ∂PE

∂t

and we can rearrange this to see that

∂(KE + PE)

∂t
= −rρ

∫

(ut)
2 dx ≤ 0 .

Thus, the total energy of the wave is decreasing over time for the damped wave equation.

4. Part (a): Since the minimum value of u(x, 0) = 4x(1−x) on the interval [0, 1] is 0 and since the
maximum value of u(x, 0) is 1 (which occurs at x = 1/2), and also since u(1, t) = 0 = u(0, t),
then by the strong maximum and minimum principles for the diffusion equation we have that
0 < u(x, t) < 1 for any 0 < x < 1 and t > 0.

Part(c):

∂

∂t

∫ 1

0
u2 dx =

∫ 1

0
2uut dx =

∫ 1

0
u(kuxx) dx = kuux|10 − k

∫ 1

0
(ux)2 dx = −k

∫ 1

0
(ux)2 dx < 0

Thus, since the time derivative of the integral is negative, it is a strictly decreasing function
over time. (Note we do not get that the final integral above can equal zero because we cannot
have ux(x, t) = 0 for all x and t, as this would imply that u is constant in x or u(x, t) = f(t).
This in turn would imply, since ut = uxx = 0 that u(x, t) = C. The only way u = C is
possible is if u = 0 to satisfy the boundary conditions. But this doesn’t agree with our initial
data.)

5. Part (a): Verifying the solution: ux = −2t−2x, uxx = −2 and ut = −2x, thus ut = xuxx. The
critical points of u(x, t) occur when both ux = 0 and ut = 0, so that t = −x and x = 0, which
implies that t = x = 0. At (0, 0), the concavity in the x-direction is uxx = −2 and in the
t-direction is utt = 0, so that the only kind of extremum the point can be is a local maximum
if it’s an extremum at all. We get no extrema on the interior of the region. Checking the
boundary pieces, we see that on x = −2, u(−2, t) = 4t − 4 which has it’s maximum value at
t = 1 and gives a max value of u(−2, 1) = 0. On x = 2, we have u(2, t) = −4t − 4 which has
it’s maximum value at t = 0, giving a max value of −4. On t = 0, u(x, 0) = −x2 which has
it’s max value at x = 0 and the max value is 0. Finally, on t = 1, we see u(x, 1) = −2x − x2

whose maximum occurs at x = −1 giving a maximum value of u(−1, 1) = 1. Comparing the
values of u over the boundary and at the critical point we see that the absolute maximum
value of u is 1 and it occurs at the point (x, t) = (−1, 1). Note that this point is NOT on
x = 2, x = −2 or t = 0, so that the statement of the maximum principle is not true for this
equation.

Part(b): Again letting v(x, t) = u(x, t) + ǫx2 and differentiating v with the same operator as
the PDE, we have:

vt − xvxx = ut − xuxx − 2kǫ = −2kǫ

Let M be the max value of u on the boundary edges x = −2, x = 2 and t = 0. Then on those
same edges, v(x, t) ≤ M + ǫl2. If v has an interior maximum at (x0, t0), then vt(x0, t0) = 0
and vxx(x0, t0) ≤ 0. Thus, vt−xvxx = −xvxx, but because x could be positive or negative, we
cannot say anything about the sign of this expression! Hence we cannot arrive at the same
contradiction we saw in the regular diffusion equation case.



6. Let w = u − v. Then wt − kwxx = (u − v)t − k(u − v)xx = 0 and w(0, t) ≤ 0, w(l, t) ≤ 0 and
w(x, 0) ≤ 0. By the (strong) maximum principle applied to w (we can apply it to w because
it’s a solution of the heat equation), we see that w(x, t) < 0 for all x in (0, l) and t > 0.
Hence, u − v < 0 for all x in (0, l) and t > 0, or u < v for all x in (0, l) and t > 0.

7. u(x, t) = 1√
4πkt

∫ ∞
−∞ e−(x−y)2/4ktφ(y) dy = 3√

4πkt

∫ 0
−∞ e−(x−y)2/4kt dy+ 1√

4πkt

∫ ∞
0 e−(x−y)2/4kt dy

Again, letting p = x−y√
4kt

, we have dp = − 1√
4kt

dy and subbing in, we have

u(x, t) = − 3√
π

∫ x/
√

4kt

∞
e−p2

dp − 1√
π

∫ −∞

x/
√

4kt
e−p2

dp .

Rearranging in order to use the error function, this becomes

u(x, t) = − 3√
π

∫ 0

∞
e−p2

dp − 3√
π

∫ x/
√

4kt

0
e−p2

dp − 1√
π

∫ 0

x/
√

4kt
e−p2

dp − 1√
π

∫ −∞

0
e−p2

dp

or

u(x, t) =
3

2
erf(∞) − 3

2
erf(x/

√
4kt) +

1

2
erf(x/

√
4kt) − 1

2
erf(−∞) .

Since erf(∞) = 1, and by symmetry erf(−∞) = −1, we have

u(x, t) = 2 − erf(x/
√

4kt) .

Note that as t → ∞, u(x, t) tends to the steady state u(x, t) = 2.

8. If u(x, 0) = e3x, then

u(x, t) =
1√

4πkt

∫ ∞

−∞
e−(x−y)2/4kte3y dy

We can begin to rearrange our terms so that we have a power in the form of a perfect square
within the integrand:

u(x, t) =
e−x2/4kt

√
4πkt

∫ ∞

−∞
e−(−2xy+y2−12kty)/4kt dy

completing the square gives

u(x, t) =
e(−x2+(−x−6kt)2)/4kt

√
4πkt

∫ ∞

−∞
e−((−2x−12kt)y+y2+(−x−6kt)2)/4kt dy

or

u(x, t) =
e9kt+3x

√
4πkt

∫ ∞

−∞
e−(y−x−6kt)2/4kt dy

Now we can make the substitution p = y−x−6kt√
4kt

, we have dp = 1√
4kt

dy, and

u(x, t) =
e9kt+3x

√
π

∫ ∞

−∞
e−p2

dp

or
u(x, t) = e9kt+3x .



9. We make the change of variables u(x, t) = e−btv(x, t), so the ut = −be−btv + e−btvt and
uxx = e−btvxx. Subbing into the PDE, we have

−be−btv + e−btvt − ke−btvxx + be−btv = e−bt(vt − kvxx) = 0

Since e−bt is nowhere zero, we can divide by it and get

vt − kvxx = 0 .

Thus, since u(x, 0) = e0v(x, 0) = v(x, 0) = φ(x)

v(x, t) =
1√

4πkt

∫ ∞

−∞
e−(x−y)2/4ktφ(y) dy

and

u(x, t) =
e−bt

√
4πkt

∫ ∞

−∞
e−(x−y)2/4ktφ(y) dy

is the solution to the diffusion equation with constant dissipation.

10. Now we make the change of variable y = x−V t so that we are tracking space by a moving frame
of reference (our position y depends on time) and keep time measured in the same way so that
our new time variable t̂ is t̂ = t. Then ux = uyyx+ut̂t̂x = uy and ut = uyyt+ut̂t̂t = −V uy+ut̂.
Subbing into the PDE, we have

ut̂ − kuyy = 0

Thus, since we also know that when t = 0, y = x and t̂ = 0, then u(y, 0) = φ(y), and

u(y, t̂) =
1√

4πkt̂

∫ ∞

−∞
e−(y−s)2/4kt̂φ(s) ds

or the solution of the diffusion equation with transport over the whole real line is:

u(x, t) =
1√

4πkt

∫ ∞

−∞
e−(x−V t−s)2/4ktφ(s) ds .


