
Homework Set # 2 Solutions – Math 435 – Summer 2013

1. Suppose that we have a uniform thin tube (approximable by one space dimension) of liquid
with some particles which are suspended in the liquid. If the liquid is flowing through the
pipe at a constant rate c (m/s) and if we also take into account that the particles diffuse
within the solution, derive the PDE for the concentration of the particles u(x, t).

Solution:

Let’s follow a “slice of fluid” between x0 and x1 at t = t0 and look at it again at t = t0 + h.
The only way we can lose mass in this slice if it some diffuses out either end, otherwise, the
mass is transported along the tube in the slice without being lost. Thus we can say that
since, if M represents the total mass of particles between x0 and x1,

M =

∫ x1

x0

u(x, t0) dx

then at the later time t0 + h, the mass in the same transported slice would be:

M =

∫ x1+ch

x0+ch

u(x, t0 + h) dx .

Any difference is these two masses is due to diffusion, so that the net change in the mass
between times t0 and t0 + h is given by

∫ x1+ch

x0+ch

u(x, t0 + h) dx −

∫ x1

x0

u(x, t0) dx =

∫ t0+h

t0

kux(x1, t) − kux(x0, t) dt

because the rate of diffusion is always proportional to the spacial gradient of the concentration
as we discussed in setting up the diffusion equation, and thus the instantaneous rate of change
of the mass due to diffusion in the slice [x0, x1] at time t is

dM

dt
= kux(x1, t) − kux(x0, t) .

If we differentiate our equality with respect to x1, we get

u(x1 + ch, t0 + h) − u(x1, t0) =

∫ t0+h

t0

kuxx(x1, t) dt .

Differentiating with respect to h now gives

cux(x1 + ch, t0 + h) + ut(x1 + ch, t0 + h) = kuxx(x1, t0 + h) .

Since h is arbitrary, this is true for any value of h, and in particular this equality holds when
h = 0, so

cux(x1, t0) + ut(x1, t0) = kuxx(x1, t0) .

Again, we notice that x1 and t0 were arbitrary, so

cux + ut = kuxx

for all x and t. This is the equation that models transport and diffusion combined.



2. Suppose now that we have a still fluid in a tube, and again have particles suspended in that
liquid. The particles move by diffusion AND sediment out of the solution at a fixed percentage
rate v (in units 1/s - v is the fraction of particles that fall out of solution per second). Derive
the PDE modeling the concentration of the particles u(x, t).

Solution:

If we look at a small segment of fluid then between x0 and x1, we can try to describe the rate
of change of the mass of particulate in that small segment.

The total mass in the segment at time t is:

M =

∫ x1

x0

u(x, t)dx

so the rate of change of the mass in the segment is

dM

dt
=

∫ x1

x0

ut(x, t)dx .

On the other hand the particles are moving solely due to diffusion and by sedimentation out
of solution. Thus, the rate of change of the mass in the segment can also be described by:

dM

dt
= rate of change due to sedimentation + rate of change due to diffusion

= −v

∫ x1

x0

u(x, t) dx +
dMdiff

dt
= −v

∫ x1

x0

u(x, t) dx + kux(x1, t) − kux(x0, t)

This holds because if we are only considering the effect of the sedimentation, we have a
percentage of particles falling out of solution in any given second, given by our rate of v
(measured in 1/sec) and we want dM

dt
which is measured in units of mass/time. Thus we need

to multiply our percent rate v by the mass of particles in our small interval
∫ x1

x0
u(x, t) dx.

Finally, putting together our two estimations of dM
dt

, we see

∫ x1

x0

ut(x, t)dx = −v

∫ x1

x0

u(x, t) dx + kux(x1, t) − kux(x0, t)

which we can differentiate with respect to x1 to get

ut(x1, t) = −vu(x1, t) + kuxx(x1, t) .

Since x1 is arbitrary, ut = −vu + kuxx over the whole domain.

3. Suppose that a uniform rod (approximable as one-dimensional) has a uniform heat source, so
that the basic equation describing heat flow within the rod is

ut = α2uxx + 1

for 0 ≤ x ≤ 1. Suppose we fix the boundaries’ temperatures so that at x = 0 the rod is held
at temperature 0 and at x = 1 the rod is held at temperature 1.

(a) Formulate the boundary conditions for the given problem.



(b) Write the boundary value problem (meaning the PDE and the boundary conditions)
that describes the steady-state temperature of the rod.

(c) Use ODE techniques to solve the steady-state problem, if possible.

Solutions:

(a) u(0, t) = 0 and u(1, t) = 1

(b) Steady-state implies that the system is not changing over time, so we let ut = 0. This
gives us the BVP

uxx = −
1

α2

with u(0) = 0 and u(1) = 1. Note that u no longer depends on time because it is a
steady state solution!

(c) uxx = −1

α2 implies that ux = −1

α2 x + c after integrating both sides with respect to x. If
we integrate once more we get u = −1

2α2 x2 + cx + b. Now, implementing the boundary
conditions, we get u(0) = b = 0 and u(1) = c − 1

2α2 = 1. Thus our steady state solution
is u(x) = −1

2α2 x2 +
(

1 + 1

2α2

)

x.

4. (a) What is your interpretation of the initial-boundary-value problem:

ut = α2uxx for 0 ≤ x ≤ 1 , 0 < t < ∞

u(0, t) = 0

ux(1, t) = 1 for0 < t < ∞

u(x, 0) = sin(πx) for 0 ≤ x ≤ 1

(b) Can the solution come to a steady state? [hint: try to find steady-state solutions]

(c) Answer (a) and (b) again, but with the boundary conditions

ux(0, t) = 0

ux(1, t) = 0 for0 < t < ∞

(a) This system models 1D diffusion (or heat flow) over an interval of length 1 such that the
particle density (or temp) is held at zero at the left end and there is a constant positive
flux of particles at the right end into the domain (or there is constant heat flow into
the rod at the right end). The inital particle density (or heat distribution) is given by
sin(πx) over the domain.

(b) If we are at steady state, we would have ut = 0 and so again uxx = 0, with boundary
conditions u(0) = 0 and ux(1) = 1. Solving as before, we have u = cx + b. u(0) = b = 0
and ux(1) = c = 1. So we again get u(x) = x as a steady state solution. Thus the
solution CAN come to steady state.

(c) If we now change the boundary conditions, the physical interpretation becomes that
there is no flux of particles (or no heat flow) through either end of the domain. For
the steady state situation, we get u = cx + b, but now ux(0) = c and ux(1) = c which
both imply that c = 0 must be true. This gives u = b as the steady state solutions.
So, we actually have infinitely many possible steady state solutions in this case - the
particle density is uniform throughout the domain regardless of the value of the density
(or the temperature is constant throughout the domain regardless of the value of the
temperature).



5. (a) What is your interpretation of the initial-boundary-value problem:

utt = c2uxx for 0 ≤ x ≤ 1 , 0 < t < ∞

u(0, t) = 0

u(1, t) = sin(t) for0 < t < ∞

u(x, 0) = 0

ut(x, 0) = 0 for 0 ≤ x ≤ 1

(b) Can the solution come to a steady state?

Solutions

(a) This models the wave equation on a 1D string of length 1, where the left end is fixed at
height zero and the right end is oscillated up and down with the height given by sin(t)
at time t. The inital position is at equillibrium (height zero everywhere) and the initial
velocity is zero.

(b) Looking for steady state solutions, we assume ut = 0, and so utt = 0. This gives us
uxx = 0. Our boundary conditions remain u(0) = 0 and u(1) = sin(t). As we solve
in the same way as for the previous problems, we obtain u = cx + b. But in trying to
implement the boundary values, we see u(0) = b = 0, and u(1) = c = sin(t) which does
not make sense since c is constant and sin(t) is clearly not. Thus this system has NO
steady state solutions, and the physical system never comes to a steady state. [Note
that this is physically reasonable since the right end is oscillated according to the sine
function FOR ALL TIME. This implies motion of the entire string for all time, which
does not allow for the position of the string to remain fixed over time]

6. Section 1.5 Strauss, problem 5. Consider the equation

ux + yuy = 0

with boundary conditions u(x, 0) = φ(x).

(a) For φ(x) = x show no solution exists.

(b) for φ(x) = 1 show infinitely many solutions exist.

Solution

Solving the transport equation requires that we find the characteristics by solving the ODE

dy

dx
= y .

By separation, we can see that ln|y| = x + c, or y = Aex. Thus the general solution to the
equation is u(x, y) = f(ye−x). Applying the boundary condition u(x, 0) = x, we get

u(x, 0) = f(0) = x .

But f(0) is necessarily a constant, and so this equality cannot hold for all x. There is no
solution to this BVP.

On the other hand for part (b), we would have

u(x, 0) = f(0) = 1 .



Since there are infinitely many functions f such that f(0) = 1 (like f(x) = x + 1, f(x) =
cos(x), f(x) = ex, etc), we have infinitely man choices for our function f and so infintely
many solutions to the BVP (like u(x, y) = ye−x + 1, u(x, y) = cos(ye−x), u(x, y) = eye−x

,
etc..)

7. Section 1.5, problem 6. Solve the equation ux + 2xy2uy = 0 with u(x, 0) = phi(x).

Solution

Again we solve the transport equation by solving this ODE for the characteristics:

dy

dx
= 2xy2

By separation, we see that

−
1

y
= x2 + c

and the general solution to the transport equation is

u(x, y) = f(x2 +
1

y
) .

If we apply the boundary condition, we have

u(x, 0) = f(x2 + 1/0)

Oh My! Thus, this is not a valid boundary condition for this PDE and no solution exists.

8. What are the types of the following equations (elliptic, parabolic, or hyperbolic)?

(a) uxx − uxy + 2uy + uyy − 3uyx + 4u = 0

(b) 9uxx + 6uxy + uyy + ux = 0

(c) uxx − 4uxy + 4uyy = 0

(d) uxx − 4uxy − 4uyy = 0

Solutions:

(a) a11 = 1, a22 = 1, a12 = −2 (since uxy = uyx) so a2
12 = 4 > 1 = a11a22 and the equation

is hyperbolic.

(b) a11 = 9, a22 = 1, a12 = 3 so a2
12 = 9 = a11a22 and the equation is parabolic.

(c) a11 = 1, a22 = 4, a12 = −2 so a2
12 = 4 = a11a22 and the equation is parabolic.

(d) a11 = 1, a22 = −4, a12 = −2 so a2
12 = 4 > a11a22 and the equation is hyperbolic.

9. Section 1.6, Problem 2. Find the regions in the xy-plane where the equation

(1 + x)uxx + 2xyuxy − y2uyy = 0

is elliptic, hyperbolic, or parabolic.

Solution

a11 = 1 + x, a22 = −y2 and a12 = xy, so it is



(a) elliptic where x2y2 < −y2(1+x). Note, for this inequality to hold, y 6= 0, so that we can
divide both sides by y2 and get x2 < −(1 + x). This can never happen! So this PDE is
nowhere elliptic.

(b) parabolic where x2y2 = −y2(1 + x). This can occur either for y = 0 or x2 = −(1 + x).
Since the latter is impossible, (note that x2 + x + 1 = 0 has no real solutions) the PDE
is only parabolic on the line y = 0 (the x-axis).

(c) hyperbolic where x2y2 > −y2(1 + x). again, this can only hold if y 6= 0, so we actually
need x2 > −(1+x), or x2+x+1 > 0. This is true for all x! Hence the PDE is hyperbolic
everywhere except the x-axis.

5. Use the rotational change of variables:

x = ξ cos θ − η sin θ

y = ξ sin θ + η cos θ

or equivalently:

ξ = x cos θ + y sin θ

η = −x sin θ + y cos θ

for some angle of rotation θ, to show that any equation of the form auxx + auyy + bu = 0
is invariant under rotation (the form of the equation doesn’t change under the change of
variables!).

Solution By the given change of variables, we have that

∂

∂x
= cos θ

∂

∂ξ
− sin θ

∂

∂η

and
∂

∂y
= sin θ

∂

∂ξ
+ cos θ

∂

∂η
.

Thus,

uxx =
∂

∂x

(

∂u

∂x

)

=

(

cos θ
∂

∂ξ
− sin θ

∂

∂η

)(

cos θ
∂u

∂ξ
− sin θ

∂u

∂η

)

and
uxx = cos2 θuξξ − 2 cos θ sin θuξη + sin2 θuηη .

Similarly

uyy =
∂

∂y

(

∂u

∂y

)

=

(

sin θ
∂

∂ξ
+ cos θ

∂

∂η

)(

sin θ
∂u

∂ξ
+ cos θ

∂u

∂η

)

and
uyy = sin2 θuξξ + 2cos θ sin θuξη + cos2 θuηη .

So subbing into our PDE, auxx + auyy + bu = 0 gives

a(cos2 θuξξ − 2 cos θ sin θuξη + sin2 θuηη) + a(sin2 θuξξ + 2cos θ sin θuξη + cos2 θuηη) + bu = 0

and simplified we get
auξξ + auηη + bu = 0 .

Thus, this PDE is called “rotationally invariant”.


