Analysis Homework 1

Sam Wilson

August 2020

Problem 12

Lemma. If (X, d) is a metric space, then $(X, min\{d, 1\})$ is also a metric space.

Proof. Let $\rho(x,y) = min\{d(x,y),1\}$. We note that the first two conditions of a metric are trivially true. Thus, we only need to show that the triangle inequality holds for $min\{d,1\}$ Let $x,y,z\in X$. We need to show

$$\rho(x,y) \le \rho(x,z) + \rho(z,y)$$

We know

$$d(x,y) \le d(x,z) + d(z,y)$$

Now, assume $d(x,y) \ge 1$, thus $\rho(x,y) = 1$ and one of the following must hold.

Case 1: let d(x,z) < 1 and d(z,y) < 1. Thus, $\rho(x,z) = d(x,z)$ and $\rho(z,y) = d(z,y)$, which implies that $1 = \rho(x,y) \le \rho(x,z) + \rho(z,y)$.

Case 2: Without loss of generality, let $d(x,z) \ge 1$ and d(z,y) < 1. Thus $\rho(x,z) = 1$ and $\rho(z,y) = d(z,y)$, which implies that $1 = \rho(x,y) \le \rho(x,z) + \rho(z,y)$.

Case 3: let let $d(x,z) \ge 1$ and $d(z,y) \ge 1$. Thus, $\rho(x,z) = 1$ and $\rho(z,y) = 1$, which implies that $1 = \rho(x,y) \le \rho(x,z) + \rho(z,y) = 2$.

Now, assume that d(x,y) < 1, thus $\rho(x,y) = d(x,y)$. If either $d(x,z) \ge 1$ or $d(z,y) \ge 1$ then the triangle inequality is trivial. So assume d(x,z) < 1 and d(z,y) < 1. Thus, $\rho(x,z) = d(x,z)$ and $\rho(z,y) = d(z,y)$. Since d is a metric, the triangle inequality holds here as well.

Therefore, the triangle inequality holds in all possible cases, meaning If (X, d) is a metric space, then $(X, min\{d, 1\})$ is also a metric space.

Theorem. (X,d) and (X,ρ) where $\rho = \min\{d,1\}$ are equivalent metric spaces

Proof. Let U_1 denote the set of all d-balls $B_d(x)$, centered at x where $x \in X$ with radius d > 0 in (X, d). Thus we can form a basis for a topology on (X, d) using the elements of U_1 . Now, we let $U_2 \subset U_1$ such that U_2 is the set of all d-epsilon balls in (X, d) such that $0 < d \le 1$. Now, we note that we can produce U_1 by taking the union of elements in U_1 . Thus, the basis formed by U_2 generates the same topology as U_1 . Now, note that U_2 is just the set of all ρ -balls $B_{\rho}(x)$. Thus the elements of U_2 form a basis for a topology on both (X, d) and $(X, \min\{d, 1\})$.

Therefore, since the metrics on (X, d) and $(X, min\{d, 1\})$ generate the same topology, they are equivalent metric spaces.