
2. EXISTENCE AND EXTENSION OF CONTINUOUS FUNCTIONS

1. M,N metric spaces, f : M → N continuous, A ⊂ M . Suppose for
all a ∈ A, the limit limx→a f(x) := F (a) exists. Then the extension of f to
F : A→ N is continuous.

For general topological spaces, the corresponding result needs a new
condition.

Definition. A Hausdorff space X is regular if

(∀x ∈ X)(∀Ux)(∃Vx ⊂ Ux open )(Vx ⊂ Ux).

Remark: This condition is local: for each x, existence of a ‘basis of closed
neighborhoods’ of x.

2. Equivalently, X is regular iff Hausdorff and for all x ∈ X and all
C ⊂ X closed with x 6∈ C, we may find Ux and W ⊃ C open, so that
Ux ∩W = ∅.

3. Metric spaces are regular.

4. (H,halfdisk), the upper half plane with the half-disk topology, is
Hausdorff but not regular.

Hint: Let Dx be a half-disk subbasic neighborhood (x ∈ L), C its comple-
ment (a closed set disjoint from x). Then the closure V of any neighborhood
V of x intersects C, so V cannot be contained in the complement of C.

5. Let X,Y be Hausdorff topological spaces with Y regular. Assume
A ⊂ X, f : A → Y is continuous and limx→a f(x) := F (a) exists, for each
a ∈ A. Then the extension of f defined by this limit is a continuous map
F : A→ Y .

6. If X,Y are metric spaces, Y is complete, A ⊂ X and f : A → Y
is uniformly continuous on A, then there is a unique extension of f to a
continuous map F : A→ Y .

Hint: Existence has two parts: defining the map and proving it is con-
tinuous. Uniqueness is easy.

7. The continuous surjective image of a separable space is separable.
That is, if f : X → Y is continuous and onto, and X is separable, then so
is Y .

8. The space of Lipschitz functions f : [0, 1] → R, with the topology
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defined by the norm:

||f || = |f(0)|+ [f ], [f ] = sup
x 6=y

|f(x)− f(y)|
|x− y|

is not separable.

9. (i) A discrete uncountable space cannot be second-countable.
(ii) The Moore plane is separable and first-countable, but not second-

countable (hence not metrizable.)
Hint: A subspace of a second-countable space is second-countable; then

use part (i).

10. In the linear space X = C[0, 1] of continuous real-valued functions
in [0,1], consider the supremum and L1 norms:

||f ||sup = sup{|f(t)|; t ∈ [0, 1]}; ||f ||1 =

∫ 1

0
|f(t)|dt.

(i) Any L1 ball contains a sup ball:

BL1(f0, R) ⊃ Bsup(f0, R), ∀f0 ∈ X,R > 0.

(ii) The L1 ball BL1(0, 1) is not contained in any ball Bsup(0, R). Thus
these two norms define different topologies on X. Hint: Consider fn ∈ X
equal to 0 at 0 and on [2/n,1], equal to n at 1/n, linear otherwise.

Definition. X is normal if Hausdorff and for all A,B ⊂ X closed, disjoint,
there exist U ⊃ A, V ⊃ B open and disjoint.

11. Any metrizable space is normal.

12. The Moore halfplane is regular, but not normal.

The zero-one extension problem: Given two disjoint closed sets A,B ⊂
X, there exists f : X → [0, 1] continuous, so that f ≡ 0 on A, f ≡ 1 on B.
Urysohn’s lemma says this problem is solvable on any normal space.

13. Conversely, if the 0-1 extension problem is solvable for any two
disjoint closed sets A,B ⊂ X, then X is normal.

14. The 0-1 extension problem is solvable in any metrizable space.

15. X is normal iff X is Hausdorff and for any A ⊂ X closed, and any
U ⊃ A open, we may find V ⊂ X open, so that

A ⊂ V ⊂ V ⊂ U.
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16. A regular, second countable space is normal.

17. (i) Subspaces of regular spaces are regular.
(ii) A product X = Πα∈ΛXα is regular iff each Xα is.

18. Closed subspaces of normal spaces are normal. Remark: Products
of normal spaces are not normal in general.

19. Let X be a normal space, C ⊂ X closed, f : C → R continuous.
Use Tietze’s extension theorem and a homeomorphism from R to (−1, 1) to
show f admits a continuous extension F : X → R.
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