
PART I: TOPOLOGICAL SPACES

DEFINITIONS AND BASIC RESULTS

1.Topological space/ open sets, closed sets, interior and closure/ basis
of a topology, subbasis/ 1st ad 2nd countable spaces/ Limits of sequences,
Hausdorff property.

Prop: (i) condition on a family of subsets so it defines the basis of a
topology on X. (ii) Condition on a family of open subsets to define a basis
of a given topology.

2. Continuous map between spaces (equivalent definitions)/ finer topolo-
gies and continuity/homeomorphisms/metric and metrizable spaces/ equiv-
alent metrics vs. quasi-isometry.

3. Topological subspace/ relatively open (or closed) subsets. Product
topology: finitely many factors, arbitrarily many factors.

Reference: Munkres, Ch. 2 sect. 12 to 21 (skip 14) and Ch. 4, sect. 30.

PROBLEMS

PART (A)

1. Define a non-Hausdorff topology on R (other than the trivial topol-
ogy)

1.5 Is the ‘finite complement topology’ on R Hausdorff? Is this topology
finer or coarser than the usual one? What does limxn = a mean in this
topology? (Hint: if b 6= a, there is no constant subsequence equal to b.)

2. Let Y ⊂ X have the induced topology. C ⊂ Y is closed in Y iff
C = A ∩ Y , for some A ⊂ X closed in X.

2.5 Let E ⊂ Y ⊂ X, where X is a topological space and Y has the

induced topology. Thenn E
Y

(the closure of E in the induced topology on
Y ) equals E ∩ Y , the intersection of the closure of E in X with the subset
Y .

3. Let E ⊂ X, E′ be the set of cluster points of E. Then Ē = E ∪ E′.

4. If X is first countable and a ∈ E′, then one may find a sequence
(xn)n≥1 in E, so that limxn = a.

5. (Sorgenfrey line, denoted Rl) (i) The collection of subsets of R B =
{[a, b); a < b} (left-closed intervals) define the basis of a topology on R.
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(ii) This topology is Hausdorff, and is finer than the usual topology on
R.

(iii) limxn = a in Rl iff xn → a+ in the usual topology (one-sided limit
from the right.)

6. Let S be a subbasis for a topology on Y . f : X → Y is continuous iff
f−1(U) is open ∀U ∈ S.

7. (i) In a product space X1 ×X2, the canonical projections p1, p2 are
open maps.

(ii) f : Y → X1 ×X2 is continuous iff p1 ◦ f and p2 ◦ f are.
(Q) How about arbitrary products?

8. First countable, second countable, Hausdorff are preserved under
finite products: X = X1 × X2 has those properties, if each Xi does. (Q)
How about arbitrary products?

8.5. Examples: The Moore half-plane and the non-tangential half-plane.
Show that (H, circle) is coarser than (H,NT ), and that any sequence in

(H,NT ) converging to a boundary point converges also in (H, circle); but
not conversely. (Later: (H,NT ) is normal, unlike (H, circle).)

8.7 The boundary line of (H, circle) (i) inherits the discrete topology as
a subspace; (ii) is a closed subset of (H, circle); (iii) shows that a subspace
of a separable space need not be separable (in contrast to the properties 1st
countable or second countable.)

PART (B)

9. Any metrizable space is Hausdorff and first countable.

10. In a metric (or metrizable) space, E ⊂ X is closed iff E is sequen-
tially closed.

11. (X, d), E ⊂ X, 6= X, d(x,E) := inf{d(x, y); y ∈ E)}. (i) f(x) =
d(x,E) is continuous on X (and Lipschitz)

(ii) d(x,E) = d(x, Ē).

12 (X, d) and (X,min{d, 1}) are equivalent metric spaces (i.e., the iden-
tity map is a homeomorphism.)

13. (i) Two quasi-isometric metrics on X define the same topology (i.e.,
are equivalent.)

(ii) d1(x, y) = |x − y| and d2(x, y) = |x3 − y3| define equivalent metrics
oon R which are not quasi-isometric.
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14. Rn is second countable.

15. X (topological space) second countable ⇒ X first countable and
separable.

16.* X (topological space) second countable ⇒ any open cover admits
a countable subcover (Lindelöf)

17. X metrizable and separable ⇒ X second-countable.

18. The Sorgenfrey line is first countable and separable, but not second
countable (and hence is not metrizable.)

PART (C)

19. Let X = F(R,R) = {f : R→ R}, the space of all functions from R
to R, with the product topology.

(i) Describe explicitly a basis for this topology (and verify that it satisfies
the conditions for a basis);

(ii) Show that lim fn = f in this topology iff fn(t) → f(t), ∀t ∈ R
(pointwiise).

20.* Show that F(R,R) is not first countable (hence not metrizable).

21.* Let E ⊂ F(R,R) be the set of characteristic functions of finite sets.
The constant function 1 is in E′, but there is no sequence fn ∈ F so that
lim fn = f .

22. A separable metric space cannot contain an uncountable discrete
set.

23. C(R; [0, 1]) (with the uniform metric) is a metric space without a
countable basis (equivalently, not separable.)

Hint: For S ⊂ Z, define f(n) = 1 if n ∈ S, f(n) = 0 if n ∈ Z \ S, and
continuous and linear otherwise. Then the set {fS ;S ⊂ Z} is uncountable
and discrete: d(fS , fT ) = 1 if S 6= T .

24. Let X be an infinite set, (M,d) a metric space with at least two
elements. Then B(X;M) (the space of bounded functions from X to M ,
with the uniform metric) does not have a countable basis.
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