PART I: TOPOLOGICAL SPACES

DEFINITIONS AND BASIC RESULTS

- 1. Topological space/ open sets, closed sets, interior and closure/ basis of a topology, subbasis/ 1st ad 2nd countable spaces/ Limits of sequences, Hausdorff property.
- Prop: (i) condition on a family of subsets so it defines the basis of a topology on X. (ii) Condition on a family of open subsets to define a basis of a given topology.
- 2. Continuous map between spaces (equivalent definitions)/ finer topologies and continuity/homeomorphisms/metric and metrizable spaces/ equivalent metrics vs. quasi-isometry.
- 3. Topological subspace/ relatively open (or closed) subsets. Product topology: finitely many factors, arbitrarily many factors.

Reference: Munkres, Ch. 2 sect. 12 to 21 (skip 14) and Ch. 4, sect. 30.

PROBLEMS

PART (A)

- 1. Define a non-Hausdorff topology on \mathbb{R} (other than the trivial topology)
- **1.5** Is the 'finite complement topology' on \mathbb{R} Hausdorff? Is this topology finer or coarser than the usual one? What does $\lim x_n = a$ mean in this topology? (*Hint*: if $b \neq a$, there is no constant subsequence equal to b.)
- **2.** Let $Y \subset X$ have the induced topology. $C \subset Y$ is closed in Y iff $C = A \cap Y$, for some $A \subset X$ closed in X.
- **2.5** Let $E \subset Y \subset X$, where X is a topological space and Y has the induced topology. Thenn \overline{E}^Y (the closure of E in the induced topology on Y) equals $\overline{E} \cap Y$, the intersection of the closure of E in X with the subset Y.
 - **3.** Let $E \subset X$, E' be the set of cluster points of E. Then $\bar{E} = E \cup E'$.
- **4.** If X is first countable and $a \in E'$, then one may find a sequence $(x_n)_{n\geq 1}$ in E, so that $\lim x_n = a$.
- **5.** (Sorgenfrey line, denoted \mathbb{R}_l) (i) The collection of subsets of \mathbb{R} $\mathcal{B} = \{[a,b); a < b\}$ (left-closed intervals) define the basis of a topology on \mathbb{R} .

- (ii) This topology is Hausdorff, and is finer than the usual topology on \mathbb{R} .
- (iii) $\lim x_n = a$ in \mathbb{R}_l iff $x_n \to a_+$ in the usual topology (one-sided limit from the right.)
- **6.** Let \mathcal{S} be a subbasis for a topology on Y. $f: X \to Y$ is continuous iff $f^{-1}(U)$ is open $\forall U \in \mathcal{S}$.
- **7.** (i) In a product space $X_1 \times X_2$, the canonical projections p_1, p_2 are open maps.
 - (ii) $f: Y \to X_1 \times X_2$ is continuous iff $p_1 \circ f$ and $p_2 \circ f$ are.
 - (Q) How about arbitrary products?
- **8.** First countable, second countable, Hausdorff are preserved under finite products: $X = X_1 \times X_2$ has those properties, if each X_i does. (Q) How about arbitrary products?
- **8.5.** Examples: The Moore half-plane and the non-tangential half-plane. Show that (H, circle) is coarser than (H, NT), and that any sequence in (H, NT) converging to a boundary point converges also in (H, circle); but not conversely. (Later: (H, NT) is normal, unlike (H, circle).)
- **8.7** The boundary line of (H, circle) (i) inherits the discrete topology as a subspace; (ii) is a closed subset of (H, circle); (iii) shows that a subspace of a separable space need not be separable (in contrast to the properties 1st countable or second countable.)

PART (B)

- **9.** Any metrizable space is Hausdorff and first countable.
- 10. In a metric (or metrizable) space, $E \subset X$ is closed iff E is sequentially closed.
- **11.** $(X,d), E \subset X, \neq X, d(x,E) := \inf\{d(x,y); y \in E\}$. (i) f(x) = d(x,E) is continuous on X (and Lipschitz)
 - (ii) $d(x, E) = d(x, \bar{E})$.
- $\mathbf{12}\ (X,d)$ and $(X,\min\{d,1\})$ are equivalent metric spaces (i.e., the identity map is a homeomorphism.)
- 13. (i) Two quasi-isometric metrics on X define the same topology (i.e., are equivalent.)
- (ii) $d_1(x,y) = |x-y|$ and $d_2(x,y) = |x^3 y^3|$ define equivalent metrics oon \mathbb{R} which are not quasi-isometric.

- **14.** \mathbb{R}^n is second countable.
- **15.** X (topological space) second countable $\Rightarrow X$ first countable and separable.
- **16.*** X (topological space) second countable \Rightarrow any open cover admits a countable subcover (Lindelöf)
 - 17. X metrizable and separable $\Rightarrow X$ second-countable.
- 18. The Sorgenfrey line is first countable and separable, but not second countable (and hence is not metrizable.)

PART (C)

- **19.** Let $X = \mathcal{F}(\mathbb{R}, \mathbb{R}) = \{f : \mathbb{R} \to \mathbb{R}\}$, the space of *all* functions from \mathbb{R} to \mathbb{R} , with the product topology.
- (i) Describe explicitly a basis for this topology (and verify that it satisfies the conditions for a basis);
- (ii) Show that $\lim f_n = f$ in this topology iff $f_n(t) \to f(t)$, $\forall t \in \mathbb{R}$ (pointwise).
 - **20.*** Show that $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is not first countable (hence not metrizable).
- **21.*** Let $E \subset \mathcal{F}(\mathbb{R}, \mathbb{R})$ be the set of characteristic functions of finite sets. The constant function 1 is in E', but there is no sequence $f_n \in \mathcal{F}$ so that $\lim f_n = f$.
- **22.** A separable metric space cannot contain an uncountable discrete set.
- **23.** $C(\mathbb{R}; [0,1])$ (with the uniform metric) is a metric space without a countable basis (equivalently, not separable.)

Hint: For $S \subset \mathbb{Z}$, define f(n) = 1 if $n \in S$, f(n) = 0 if $n \in \mathbb{Z} \setminus S$, and continuous and linear otherwise. Then the set $\{f_S; S \subset \mathbb{Z}\}$ is uncountable and discrete: $d(f_S, f_T) = 1$ if $S \neq T$.

24. Let X be an infinite set, (M,d) a metric space with at least two elements. Then $\mathcal{B}(X;M)$ (the space of bounded functions from X to M, with the uniform metric) does not have a countable basis.