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CONSTRUCTING METRICS
WITH THE HEINE-BOREL PROPERTY

ROBERT WILLIAMSON AND LUDVIK JANOS

ABSTRACT. A metric space (X, d) is said to be Heine-Borel if any closed and

bounded subset of it is compact. We show that any locally compact and o-

compact metric space can be made Heine-Borel by a suitable remetrization.

Furthermore we prove that if the original metric d is complete, then this can

be done so that the new Heine-Borel metric d' is locally identical to d, i.e.,

for every i 6 X there exists a neighborhood of x on which the two metrics

coincide.

Introduction. By the Heine-Borel (HB) property of a metric space (X, d) we

mean here that every closed bounded set is compact, i.e. bounded sets are totally

bounded, and we shall say d is a Heine-Borel metric.1 We investigate here how a

space can fail to be Heine-Borel. To begin with we are interested in topological

conditions that insure that a metrizable space X admits an HB metric d. Such a

space need not be even finite dimensional. On the other hand it is obvious that

any HB space is cr-compact and locally compact, and we offer in §1 our first main

result, Theorem 1, as a converse to that.

In §2 we investigate when a cr-compact, locally compact metric space (X,d)

admits an HB metric which is locally identical to d. Note that an HB metric is

complete. In Theorem 2 we construct an HB metric locally identical to a given

complete metric. This is not a definitive result, for we construct in Example 1 a

metric space which is not complete, yet it too admits a locally identical HB metric.

On the other hand, the usual metric d on the open interval (0,1) is an example of

a space which does not admit any locally identical metric which is complete (see

Remark 2 in §2), and therefore admits no locally identical HB metric.

Finally, in §3, we present two more examples and we ask: When does a space

admit an HB metric which is uniformly locally identical to a given metric? Here

a definitive answer is possible, given in Theorem 3. Although the situation is

seemingly close to that of §2 it is in fact simpler. To explore further how a metric

space which is cr-compact, locally compact, and complete can fail to be Heine-Borel

we investigate a property common to all our examples of such spaces and close with

a conjecture.
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1. Construction of a Heine-Borel metric. The following theorem is due to

Vaughan [7] and appears in [2] with a proof similar to the one we give (see also [4,

problem 4.2C]).

THEOREM 1. IfX is aa-compact, locally compact, metrizable space, then there

is a compatible metric on X which is Heine-Borel.

PROOF. We say a subset of X is precompact if it has compact closure. Since

X is cr-compact and locally compact, X can be represented as the union of an

increasing sequence (finite or infinite) of open precompact sets Xn such that the

closure C1(X„) is properly contained in Xn+i (see e.g. [4 or 9]). We shall call such

a sequence an exhaustion of X.

Using the normality of X we construct continuous functions /„ : X —+ [0,1] such

that fn(x) is 0 for a; € Xn and is 1 for x E X — Xn+i. Observing that the function

oo

/(*) = £/«(*)

71=1

is well defined and continuous, we define

d'(x,y)=d(x,y) + \f(y)-   f(x)\,

where d is an arbitrary compatible metric on X. We observe that d! is a metric on

X. In order to show that d! is equivalent to d, we first observe that d! > d so we

only need to show that a sequence {xn} converges to x relative to d! if it converges

relative to d, and this follows from the continuity of /. Now any d'-bounded set A

is contained in some Xn, by the definition of /, so it has compact closure. Thus d'

is a Heine-Borel metric.

2. Locally identical metrics. We say two metrics d and d' on X are locally

identical iff every point x E X has a neighborhood V such that d(z,y) = d'(z,y)

for z,y E V. Equivalently, there is a neighborhood of the diagonal in X x X on

which d and d! coincide.

On Rn (or any unbounded HB space (X, d)) one can construct an equivalent

bounded metric d* by setting d*(x,y) = min{d(x,y), 1}, and this is complete but

not HB. Is this example in any sense typical, and if so, how does one reconstruct

an HB metric from it? The rest of this note is an investigation of this question.

Similar examples suggest that the essential thing is that the bounded metric is

locally identical to the given metric. Our second main resuslt is

THEOREM 2. A metric space (X,d) has a Heine-Borel metric which is locally

identical to d if it is complete, a-compact, and locally compact.

Example 1 shows that an incomplete metric space may also admit a locally

identical HB metric, but we can put the result above in the more definitive form

of Theorem 2' as follows. We shall say that metrics d and d! are Cauchy equivalent

when a sequence is Cauchy relative to d if and only if it is Cauchy relative to d'—

note that this does not imply uniform equivalence (see Example 2). We shall say

metrics d, d' which are Cauchy equivalent and locally identical are Cauchy locally

identical.
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THEOREM 2'. A metric space (X,d) has a Heine-Borel metric which is Cauchy

locally identical to d if and only if it is complete, cr-compact, and locally compact.

It is easily seen that two complete equivalent metrics are Cauchy equivalent, so

this follows immediately from Theorem 2.

PROOF OF THEOREM 2. We shall sometimes call a finite sequence of points in

X, (xi\i = 1,..., n), a chain (from xi to xn), and define the length of the chain to

be ¿d(xt,xl+i).

Let W be a covering of the metric space (X, d). We define a relation on X, also

denoted by W, by setting xWy iff there is an A E W such that x,y E A, and we

define x =w y (or just x = y) if there is a chain (xi\i = 1,..., n) from x to y such

that Xi W Xi+i for all i < n. We say (xn) is a W-chain and x and y are W-connected;

this is evidently an equivalence relation, and we call the equivalence classes W-chain

classes. On any equivalence class of = we define the W-chain metric dw by

DEFINITION. For x = y, dw(x, y) is the infimum of the lengths of all W-chains

from x to y.

We henceforth asume that for any x, y E X there is a W-chain from x to y, so

there is only one equivalence class; we then say X is W-chain connected. Of course

if X is connected it is W-chain connected for any open covering W.

For a metric space X with covering W, the chain metric dw is easily seen to be a

metric, and it is locally identical to the original metric. It is evident that the chain

metric dw is the largest metric which agrees with d on every set of W.

If xi,..., xn is a W-chain and Xi W Xj for some j > i, one can delete all the points

between x¿ and x3 to produce a chain with fewer points and length no greater than

the original. This process can be repeated until, for i < j, Xi W Xj iff j = i+ 1; we

call such a chain a reduced chain.

It is evident that Theorem 2 follows from the following proposition, in which a

Heine-Borel metric dy is constructed.

PROPOSITION. Let Xi, X2,... be an exhaustion (in the sense of$l) of the com-

plete, locally compact metric space (X,d). Let Vn = Xn — Cl(Xn_2), with the con-

vention that Xn = 0 for n < 0. Let V = {Vn\n = 2,3,... }. Then any dy-bounded

set is precompact.

PROOF. By the height of x, h(x), we mean the smallest n such that x E Xn.

If xi,... ,xn is a V-reduced chain and h(xi) < h(xn), then for each integer from

h(xi) to h(xn) there will be exactly one point of the chain with that integer as

height; this follows from the definition of the Vn. Thus when h(xi) = 1, we have

h(xi) = i for i = 1,..., k. Recall that we insist that C\(Xn) is properly contained

in Xn+i, and this implies that X is V-connected.

Now suppose the proposition is false. Then there is a bound K and a sequence

of points (xn) with no convergent subsequence such that dy(xi,xn) < K for all

n, and we take xi to be in Xi. So each x% admits a V-chain xt¡i,...,x¿„(¿) from

xi to Xi of length less than K, and we may as well suppose it is reduced, so

h(xl¡k) = k. Then Xi¿ is xi for all i; let yj be this point. The sequence of points

Xi¿ in X2, which is precompact, must have a subsequence, with indices i = i2(j)

say, converging to some point y2. The corresponding subsequence of the 2^3 must

in turn have a subsequence with indices Í2Í3U) say (where i2i^ is the composition
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of the functions), converging to some point 2/3. We proceed in this way inductively,

selecting yn for every n. Now we show the

LEMMA.   The length of the chain yi,. ■ ■ ,yn is no greater than K for every n.

PROOF OF THE LEMMA. By construction of the yi there is an indexing i =

*l*'a ' • • in(j) such that for each k = 1,..., n the corresponding subsequence (Xi(j),fc)

converges to yk. Thus for any Ô > 0 there is an N such that for all j > N and

k — 1,... ,n, d(xi(j)ik, yk) < 6/n. So for j > N we have, for i = i(j) and with A;

ranging from 1 to n — 1 in the sums,

/JAVktVk+l) < Y2d(yk,xlyk) + ^d(x¿,fe,Xjifc+i) + y^d(xitk+i,yk+i)

<26 + K.

Since this holds for all 6, the Lemma is proved.

This shows that J2d(yk,yk+i) is convergent, so yn is a Cauchy sequence relative

to the original metric ci. Since X is complete this sequence converges to a point

y, say. But where could y be? It must be in some Xjv, but these are open, so

we would then have yn E Xjv for all sufficiently large n. But yn is the limit of

points in Vn, hence in the complement of Xn-2, which is closed, so yn is also in the

complement of Xn-2. Since this holds for every n we reach a contradiction which

establishes the Proposition. Note that we make no assertion about the convergence

of any subsequence of the original xn. This completes the proof of Theorem 2.

The chain metric of a covering does not seem to be in the literature in quite this

form, although similar ideas have been often used; for example in [1, 3, 5, 6].

We present an example. To describe this and the following examples it will be

convenient to generalize the chain construction slightly. Suppose X is an abstract

set covered by a family W of subsets which are metric spaces such that W is

coherent, in the sense that if (A,d) and (B,d') are in W, then d and d! agree on

A PI B. Then we can say what it means for X to be W-chain connected and we can

define the chain metric dw exactly as before. Again, it will be the largest metric

which agrees with d on A for any (A,d) E W. The properties of the examples are

easily verified by elementary arguments. By TV we mean the set of positive integers,

and we will let n be a variable over N and x, y variables over R.

EXAMPLE l. Let W = {Kn\n E N}L) {Hn\n E N}, where Kn = {n} x R has
metric kn((n, x), (n, y)) = min{|a; — y\, 2~n} and Hn = [n, n + 1] x {n} has metric

hn((x,n), (y,n)) = (l/2")|x - y\. Let Xi = |JW with the chain metric di = dw-

This space is not complete since the sequence (n, n) does not converge. Nevertheless

for a suitable exhaustion the chain metric does produce a metric which is locally

identical, but not Cauchy equivalent, to d\. So the question remains open: What

are necessary conditions on a metric space so that it admits a locally identical

Heine-Borel metric?

REMARK 1. If the open unit interval (0,1) is given the usual metric d, it is

easily seen that the chain metric for any covering W coincides with d. Since, as

noted above, the chain metric is the largest metric that coincides with d on each

set of the covering, it is evident that any metric locally identical to d cannot exceed

d, and therefore cannot be Heine-Borel.

3. Uniformly locally identical metrics. Recall that metrics are uniformly

equivalent if they generate the same uniform structure, i.e. the same surroundings
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of the diagonal in X x X. We say metrics d, d' on X are uniformly locally identical

if they are uniformly equivalent and coincide on some surrounding of the diagonal.

A metric space is uniformly locally compact (see [9]) if there is a 6 > 0 such that

any open ball of radius 6 is precompact. Consider the following example, which is

constructed using the method of Example 1 above:

EXAMPLE 2. Let W = {Ln\n E N} U {Hn\n E N) where Ln = {n} x R with
metric en((n,x),(n,y)) = min(|x — y\,l/n), and Hn — [n,n+ 1] x {0} with the

usual metric. Let X2 = (J W with the metric d2 = dw-

The space X2 is complete and the chain construction of Theorem 2 supplies

an HB metric d2 which is Cauchy locally identical to d2. Indeed, for a suitable

covering, d'2 is the same as d2 with en replaced by e'n in the construction, where

e'n((n,x),(n,y)) — \x — y\. Nevertheless, since (X2,d2) is not uniformly locally

compact, there is no HB metric which is uniformly equivalent to d2, so certainly

none which is uniformly locally identical to d2. This incidentally provides a simple

example of metrics that are Cauchy equivalent but not uniformly equivalent. This

distinction will be important in what follows, for in the context of uniform local

identity a definitive result is possible, and is in fact less delicate than Theorem 2.

THEOREM 3. A metric space (X,d) has a Heine-Borel metric d! which is uni-

formly locally identical to d if and only if (X,d) is cr-compact and uniformly locally

compact.

PROOF. We first note that a uniformly locally compact space is automatically

complete. Now the "only if" part follows from the observation that any HB metric

is uniformly locally compact, and the property is certainly preserved under uniform

local identity.

The proof of Theorem 2 will give us the "if" part of the theorem as well if we

can choose the exhaustion used there so that the cover V constructed from it is a

uniform cover. That is the content of the next lemma.

Let B[6] be the covering consisting of all open balls B(x, 6) of radius 6 and center

x for any x E X.

LEMMA. Suppose every open 26-ball is precompact. Then there is a locally fi-

nite cover W of precompact open sets such that B[6] refines W (which is therefore

uniform) and X is W-chain connected. There corresponds to W an exhaustion (Xn)

of X such that the associated cover V = {Vn]n E N}, where Vn = Xn — C1(X„_2),

is refined by W.

PROOF. We will construct the cover W and an exhaustion at the same time.

Choose some x E X and let W\ = {B(x, 2<5)},Xi = B(x,26). For the purpose

of induction suppose that the sequence of partial coverings Wi,..., Wn, has been

constructed where each Wk is a finite collection of open precompact sets, and Wk

includes Wk-i. Let Xk = (j{A\A E Wk}. Further, suppose that

(i) d(Xck,Xk-i) > 6 îor k < n,

(ii) none of the sets in Wk — Wk-i meet Xk-2,

(iii) for any x E X„_i, B(x,6) is contained in some element of Wn.

Then cover Cl(Xn) by ¿-balls, and select a finite subcover, based at xi,... ,xs,

say. Let 5¿ = B(xí,26) n C1(X„_2)C. Set Wn+1 = Wn U {Bi,..., B3}, but discard

the empty 5¿'s and define Xn+i as above. Then W„+1 is a cover of Xn+i by open
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precompact sets. It follows easily that (i) and (ii) hold for k + 1. Finally, suppose

x E Xn — Xn_i. Then there is an x¿ with d(x,Xi) < 8, so B(x,8) is contained

in B(xi,26); since d(x,Xn-2) > 8 by (i), B(x,8) is contained in X£_2 as well, so

B(x,8) is contained in f?¿. Since (iii) already holds for x E Xn_i, this verifies it for

n + 1 as well.

Assume for the moment that X is B[<5]-chamable. Then for any x E X there is

a chain B\,..., Bq of ¿-balls from xi to x, and (i) guarantees that Bi is contained

in Xj, by an easy induction. Thus \\Xn = X. It is then obvious from (i) that

the Xn form an exhaustion, at least if X is not compact; if it is, the argument is

trivial. Evidently (JWn covers X, and (ii) guarantees that the covering is locally

finite, while (iii) says it is refined by B[8].

Finally, if X is not Z?[¿]-chain connected, we proceed as follows. We enumerate

the equivalence classes as Ei,... and select a ¿-ball Bi contained in ¿?¿. Then we

adjoin Bi to W,. This does not affect the construction above, and completes the

proof of Theorem 3.

We remark that the proof of Theorem 2 is not really needed. We can just use

property (i) in the proof of the Lemma to show that if a set A is dy-bounded by K

and 7V¿ > K, then A is contained in X^. It does not seem that the method used

here can be generalized to prove Theorem 2.

EXAMPLE 3. In this example n ranges over the positive integers TV. Let Kn =

{(x,y)\x = n and 0 < y < 1/n} U {(1,1)}, Hn = {(x,0)\n < x < n + 1}, and

TV' = {(n,0)|n = 1,2,... }. Let W = {Kn\n E N}u{Hn\n E N}U{N'}. Projection

on the second factor embeds Kn in [0,1], and we give Kn the induced metric. Let

Hn have the usual metric and let TV' have the discrete metric of diameter 1, i.e. the

distance between any two points is 1. Then we set X3 = U W and 0Í3 = dw- One

can regard X3 as a subspace of the complete graph on the points TV' U {(1,1)}.

The space X3 is uniformly locally compact. Although c/3 is not HB, by Theorem 3

there is an HB metric uniformy locally identical to 0Í3. The space X3 has the

property that Br = B((l, 1),r) is precompact if r < 1 but the closure of Si, which

is (jLn, is not compact—this does not occur in the "bounded metric" model d* of

§2. We introduce some notation to pursue this a little further.

Let B(x,r) be the open ball of radius r and center x and let CB(x,r) =

{z\d(x,z) < r) be the closed ball, so G\(B(x,r)) is contained in CB(x,r). The

second remark has to do with the relation between the HB property and the dif-

ference between these two subsets. A bounded metric d*, in the sense of §1, has

several properties that seem to be related to the failure to be HB. For any space

X which is complete, cr-compact, and locally compact, let rx = sup{r|73(x, r) is

precompact}—we will call rx the compact radius of X—so X is HB iff rx = 00 for

some x. If rx is finite one can show CB(x, rx) cannot be compact. On the other

hand, for the bounded metric d* of §2, C\(B(x, rx)) is compact. Furthermore in the

case of (R, d*) the chain metric could be based on the cover of all precompact balls,

without the condition of local finiteness, so that on every precompact ball the orig-

inal metric coincides with the HB chain metric. But there is a complete cr-compact,

locally compact space X with x E X such that G\(B(x,rx)) = CB(x,rx). Such an

example, incidentally, cannot be uniformly locally compact. It follows that any HB

metric on X (which exists by the theorem) cannot agree with the original metric on

the whole open ball B(x,rx), and it follows that the cover of all precompact balls
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cannot be used in the chain construction; some condition such as local finiteness is

called for. We do find one feature common to all our examples of spaces which fail

to be Heine-Borel, so we make the following

CONJECTURE. A complete admissible metric for a cr-compact, locally compact

space X is always a Heine-Borel metric if G\(B(x,r)) = CB(x,r) for every x E X

and r > 0.
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