PROBLEM SET 8: CONNECTED SPACES

1. A subset $E \subset \mathbb{R}$ is connected iff E is an interval.
2. (i) If each X_{α} is connected and $\bigcap_{\alpha} X_{\alpha} \neq \emptyset$, then $X=\bigcup_{\alpha} X_{\alpha}$ is connected.
(ii) If each pair of points $x, y \in X$ lie in some connected subset $E_{x y} \subset X$, then X is connected.
(iii) If $X=\bigcup_{n \geq 1} X_{n}$, each X_{n} is connected and $X_{n} \cap X_{n+1} \neq \emptyset \forall n \geq 1$, then X is connected.
3. If $E \subset X$ is connected and $E \subset A \subset \bar{E}$, then A is connected (in particular, \bar{E} is connected.)
4. (i) $X=X_{1} \times X_{2}$ is connected iff both X_{i} are.
(ii) $X=\Pi_{\lambda} X_{\lambda}$ is connected iff each X_{λ} is.
5. (i) A subset $E \subset \mathbb{R}$ is totally disconnected iff E contains no interval.
(ii) $\mathbb{Q}, \mathbb{P}=\mathbb{R} \backslash \mathbb{Q}$ and the Cantor middle-thirds set $C \subset[0,1]$ are totally disconnected.

Def. A chain of open sets connecting two points $a, b \in X$ is a sequence U_{1}, \ldots, U_{n} of open sets of X such that $a \in U_{1}, b \in U_{n}$ and $U_{i} \cap U_{j} \neq \emptyset$ iff $|i-j| \leq 1$.
6. If X is connected and \mathcal{U} is any open cover of X, then any two points $a, b \in X$ can be connected by a chain of open sets consisting of elements of \mathcal{U}.

Hint: Let Z be the set of points of X that can be connected to a by a chain of open sets in \mathcal{U}. It is enough to show Z is closed (since it is clearly open and non-empty.)

Pathwise connected spaces. Path connected implies connected, but not conversely. Thus the path components of X partition each cnnected component of X. Unlike the connected components, the path components need not be closed (example: 'topologists' sine curve'.)
X is locally path connected if for all x and all U open neighborhood of x, there exists $x \in V \subset U$ with V open and path connected.

The following conditions are equivalent:
(1) Each path component of X is open (and hence also closed, as its complement is the union of all other path components.)
(2) Each point of X has a path-connected open neighborhood.
7. If $E \subset \mathbb{R}^{n}$ is countable, its complement E^{c} is path connected.
8. A connected, locally path connected space X is path connected. In particular, connected open sets in \mathbb{R}^{n} are path connected.
9. The unit sphere in a normed vector space (of dimension at least 2) is path connected.

Def. X is locally connected if each $x \in X$ has a local basis of open connected sets.
10. X is locally connected iff each component of an open set is open.
11. If $f: X \rightarrow Y$ is a continuous map, and X is connected, then its graph $\Gamma_{f} \subset X \times Y$ is connected. Is the converse true?
12. (i) Any collection \mathcal{U} of pairwise disjoint open subsets of \mathbb{R}^{n} is countable. (In particular, any open subset of \mathbb{R}^{n} is the disjoint union of countably many connected components, or path components.)
(ii) If $I \subset \mathbb{R}$ is a interval and $f: I \rightarrow \mathbb{R}$ is a monotone function, the set of points of discontinuity of f is a countable subset of I.
(iii) Any open subset of \mathbb{R} can be expressed (in a unique way) as a countable union of disjoint open intervals.
13. A connected metric space with more than one point is uncountable. Hence any countable metric space is totally disconnected.
14. The group $G(n)$ of $n \times n$ matrices with nonzero determinant is not connected. Its connected components are the preimages G_{+}, G_{-}of the positive (resp. negative) real numbers under the determinant function.
15. Let $f: X \rightarrow Y$ be a continuous, open, surjective map. If Y is connected and each fiber $f^{-1}(y)$ is connected, then X is connected. What about "path connected"?
16. (i) What are the components and path components of $\mathbb{R}^{\mathbb{N}}$, in the product topology?
(ii) Give $X=\mathbb{R}^{\mathbb{N}}$ the uniform topology. Show that x, y lie in the same component of X iff the sequence $x-y$ is bounded (it is enough to consider the case $y=0$, of course.)
17. If Y is Hausdorff and connected (resp. path connected) and X is Hausdorff, is $\mathcal{F}(X ; Y)$ (all maps) with the pointwise topology connected (resp. path connected?) What about $C(X, Y)$ in the compact-open topology? (Consider the case $X=S^{1}$, the unit circle, and $Y=\mathbb{R}^{2} \backslash\{0\}$.)

