MATH 341, ANALYSIS I-THIRD TEST, April 22, 2013.

Instructions. Closed book, closed notes, no electronics. Time given: 50 min. **10 pts per item**. Full details for full credit.

- 1. Consider $f_n:[0,\infty)\to\mathbb{R}, f_n(x)=\frac{x^2}{1+x^n}$.
- (i) Compute the pointwise limit $f:[0,\infty)\to\mathbb{R}$.
- (ii) Does $f_n \to f$ uniformly on $[0, \infty)$? Justify.
- (iii) Does $f_n \to f$ uniformly on $[2, \infty)$? Justify.
 - **2.** Let $f_n: \mathbb{R} \to \mathbb{R}$ be given by: $f_n(x) = \frac{x}{1+nx^2}$.
- (i) Prove that $f_n \to 0$ uniformly on \mathbb{R} . (Hint: use Calculus to show that $\sup_{\mathbb{R}} |f_n| = \frac{1}{2\sqrt{n}}$).
- (ii) Is the pointwise limit of the derivatives $f'_n(x)$ continuous on \mathbb{R} ? For which x do we have $\lim f'_n(x) = 0$?
 - 3. Let $h(x) = \sum_{n \ge 1} \frac{1}{x^2 + n^2}$.
- (i) Show that h(x) is continuous on \mathbb{R} .
- (ii) Is h differentiable on \mathbb{R} ? If so, is h' continuous? Justify.
- **4.** Recall the set of x where a power series $\sum a_n x^n$ converges is either all of \mathbb{R} , or an interval consisting of (-R,R) (for some R>0) and possibly one or both of its endpoints.
- (i) What is R for the power series $g(x) = \sum_{n \ge 1} (-1)^{n-1} \frac{x^n}{n}$? Justify.
- (ii) Find an expression for g'(x) (not as a power series), including its domain.
- (iii) If R is finite (for a general power series $\sum a_n x^n$), explain why there are at most two points where the series converges conditionally.

Bonus question. State the Ascoli-Arzelà theorem, for a family \mathcal{F} of functions defined on an interval [a,b]. Include the definition of " \mathcal{F} is equicontinuous on [a,b]".

Remark. The bonus question will replace one item in another question, if answered correctly (no partial credit). Points not transferable to another test!