MATH 341, ANALYSIS I-SECOND TEST, Mar. 20, 2013.
Instructions. Closed book, closed notes, no electronics. Time given: 50 min .20 pts per problem. Full details for full credit.

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Prove that if $U \subset \mathbb{R}$ is an open set, the preimage $f^{-1}(U)$ is also an open set.
2. Let $f:[0,1] \rightarrow[0,1]$ be continuous. Prove that f must have a fixed point in $[0,1]$ (that is, a point $c \in[0,1]$ so that $f(c)=c$).
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by:

$$
f(x)=x^{2} \cos \left(\frac{1}{x}\right), x \neq 0 ; \quad f(0)=0 .
$$

(i) Show that f is differentiable at $x=0$;
(ii) Is f^{\prime} continuous at $x=0$? Justify.
4. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b), with $f^{\prime}>0$ on (a, b). Show that f is strictly increasing on (a, b).
5. (i) Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is Lipschitz on a set $A \subset \mathbb{R}$, then f is uniformly continuous on A. (Include the definitions of "Lipschitz" and "uniformly continuous".)
(ii) Let $f(x)=\sqrt{x}$, defined in $I=\{x \in \mathbb{R} ; x \geq 0\}$. Explain why f is uniformly continuous in $[0,1]$, and show that f is not Lipschitz in $[0,1]$.

