MATH 341, ANALYSIS I-SECOND TEST, Mar. 20, 2013.

Instructions. Closed book, closed notes, no electronics. Time given: 50 min. 20 pts per problem. *Full details for full credit.*

1. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Prove that if $U \subset \mathbb{R}$ is an open set, the preimage $f^{-1}(U)$ is also an open set.

2. Let $f : [0,1] \to [0,1]$ be continuous. Prove that f must have a fixed point in [0,1] (that is, a point $c \in [0,1]$ so that f(c) = c).

3. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by:

$$f(x) = x^2 \cos(\frac{1}{x}), x \neq 0; \quad f(0) = 0.$$

(i) Show that f is differentiable at x = 0; (ii) Is f' continuous at x = 0? Justify.

4. Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b), with f' > 0 on (a, b). Show that f is strictly increasing on (a, b).

5. (i) Show that if $f : \mathbb{R} \to \mathbb{R}$ is Lipschitz on a set $A \subset \mathbb{R}$, then f is uniformly continuous on A. (Include the definitions of "Lipschitz" and "uniformly continuous".)

(ii) Let $f(x) = \sqrt{x}$, defined in $I = \{x \in \mathbb{R}; x \ge 0\}$. Explain why f is uniformly continuous in [0, 1], and show that f is *not* Lipschitz in [0, 1].