1. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear operator with eigenvalues $x = 1/2$ and $x = 5$, and corresponding eigenspaces:

$$E(1/2) = \langle (2, 1, 1) \rangle, \quad E(5) = \langle (2, 1, 1) \rangle^\perp.$$

Find matrices P and A in GL_3 so that the matrix of T in the standard basis of \mathbb{R}^3 has the form: $[T]_{std} = PAP^{-1}$.

2. P is the projection onto the subspace $V = \{x_1 + x_2 + 2x_3 = 0\}$ of \mathbb{R}^3, parallel to the subspace $W = \langle (1, 2, 2) \rangle$. (i) Find 3×3 matrices B (invertible) and Λ so that the matrix of P in the standard basis is BAB^{-1} (ii) What are the eigenvalues/eigenspaces of P? Justify.

3. (i) Use the Gram-Schmidt procedure to find an orthonormal basis of the subspace $\{2x_1 + x_2 - x_3 = 0\}$ of \mathbb{R}^3. (ii) Find a matrix A so that the matrix P (in the standard basis) of orthogonal projection onto this subspace is given by $P = AA^t$.

4. Given the following three-dimensional subspaces of \mathbb{R}^4, compute the dimension of their intersection and find a basis for it.

$$V : x_1 + 2x_2 + 3x_3 = 0 \quad W : x_1 - 2x_3 - x_4 = 0.$$

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 2 & 0 & 3 & 4 \\ 4 & 0 & 5 & 2 \end{bmatrix}$$

5. Find the general solution of the system $Ax = b$, $b = (1, 1, 3)$.(Hint: begin by reducing the augmented matrix to row-echelon form, then find a basis for the nullspace of A.)