The variation of parameters formula.

The ‘variation of parameters’ method may be recast as a useful formula to represent a particular solution to a non-homogeneous linear differential equation, as an integral involving the ‘forcing function’ and a well-chosen solution of the corresponding *homogeneous* problem. This is general, but it is described here only in the constant-coefficient case.

For first-order equations we know this already. To solve:

\[y' + by = f(t), \quad y = y(t) \]

we use \(e^{bt} \) as an integrating factor and obtain:

\[y_p(t) = \int_0^t e^{-b(t-s)} f(s) ds, \]

the solution satisfying \(y_p(0) = 0 \). Note that \(e^{-bt} \) is the unique solution of the *homogeneous* equation with value 1 at \(t = 0 \). The other thing to observe is that this formula makes sense also for *piecewise continuous* forcing terms \(f(t) \).

Consider now the second-order equation:

\[ay'' + by' + cy = f(t), \quad y = y(t). \]

Let \(r_1 \neq r_2 \) be the roots of the characteristic equation, which may be complex. (The conclusion stated below also holds for the case of double roots.) Assuming a particular solution of the form:

\[y_p(t) = e^{r_1 t} u_1(t) + e^{r_2 t} u_2(t) \]

and setting up the usual system for \(u'_1, u'_2 \), we are led to:

\[u'_1 = \frac{1}{r_1 - r_2} e^{-r_1 t} f(t), \quad u'_2 = -\frac{1}{r_1 - r_2} e^{-r_2 t} f(t), \]

and after integration:

\[y_p(t) = \int_0^t \frac{e^{r_1 (t-s)} - e^{r_2 (t-s)}}{r_1 - r_2} f(s) ds. \]

Observe that the solution of the *homogeneous* equation given by:

\[y_s(t) = \frac{e^{r_1 t} - e^{r_2 t}}{r_1 - r_2} \]
has the initial conditions:

\[y_s(0) = 0, \quad y_s'(0) = 1. \]

In the case of complex roots \(\alpha \pm i\beta \), it is easy to compute that:

\[y_s(t) = \frac{1}{\beta} e^{\alpha t} \sin(\beta t) \]

(the subscript \(s \) is supposed to remind one of ‘sine’; in fact it is easy to show that \(y_s(t) \) is always an odd function of \(t \).) If the roots are real, we can always write them in the form \(\alpha \pm \beta \) with \(\alpha, \beta \) real and \(\beta > 0 \), and then:

\[y_s(t) = \frac{1}{\beta} e^{\alpha t} \sinh(\beta t) \]

(using the hyperbolic sine.)

Thus the representation formula in the second-order case may be written as:

\[y_p(t) = \int_0^t y_s(t-u)f(u)du. \]

Verify that \(y_p(t) \) is the solution of the non-homogeneous problem with initial conditions \(y_p(0) = y_p'(0) = 0 \).

Remark. Note again that the integral is perfectly well-defined for piecewise continuous forcing term \(f(t) \).

Notation. Functions defined by an integral of two other functions (of the above type) are known as convolution products, denoted by a star:

\[(f \ast g)(t) = \int_0^t f(t-u)g(u)du. \]

The convolution product has many of the properties of the product of real numbers, except that there is no function ‘1’ (that is, which convolved with any function \(f \) reproduces \(f \).) For example, it is commutative:

\[f \ast g = g \ast f, \]

as one verifies easily using a change of variables in the integral.

Finally, denoting by \(y_c(t) \) the solution of the homogeneous equation with IC \(y_c(0) = 1, y'_c(0) = 0 \) (as in ‘cosine’), we have the ‘formula’ for the solution of the IVP for the non-homogeneous equation with IC \(y(0) = y_0, y'_0 = y_1 \):

\[y(t) = y_0 y_c(t) + y_1 y_s(t) + (y_s \ast f)(t). \]