function [tout, yout] = rk2(FunFcn, tspan, y0, ssize)
% RK2 Integrates a system of ordinary differential equations using
% the second order Runge-Kutta method. See also ODE45 and
% ODEDEMO.M.
% [t,y] = rk2('yprime', tspan, y0) integrates the system
% of ordinary differential equations described by the M-file
% yprime.m over the interval tspan=[t0,tfinal] and using initial
% conditions Y0.
% [t, y] = rk2(F, tspan, y0, ssize) uses step size ssize
%
% INPUT:
% F - String containing name of user-supplied problem description.
% Call: yprime = fun(t,y) where F = 'fun'.
% t - Time (scalar).
% y - Solution column-vector.
% yprime - Returned derivative column-vector; yprime(i) = dy(i)/dt.
% tspan = [t0, tfinal], where t0 is the initial value of t, and tfinal is
% the final value of t.
% y0 - Initial value column-vector.
% ssize - The step size to be used. (Default: ssize = (tfinal - t0)/100).
%
% OUTPUT:
% t - Returned integration time points (column-vector).
% y - Returned solution, one solution column-vector per tout-value.
%
% The result can be displayed by: plot(t,y).
% Initialization
t0=tspan(1);
tfinal=tspan(2);
pm = sign(tfinal - t0); % Which way are we computing?
if nargin < 4, ssize = (tfinal - t0)/100; end
if ssize < 0, ssize = -ssize; end
h = pm*ssize;
t = t0;
y = y0(:);
% We need to compute the number of steps.
dt = abs(tfinal - t0);
N = floor(dt/ssize) + 1;
if (N-1)*ssize < dt
N = N + 1;
end
% Initialize the output.
tout = zeros(N,1);
tout(1) = t;
yout = zeros(N,size(y,1));
yout(1,:) = y.';
k = 1;
% The main loop
while k < N
if pm*(t + h - tfinal) > 0
h = tfinal - t;
tout(k+1) = tfinal;
else
tout(k+1) = t0 +k*h;
end
k = k + 1;
% Compute the slopes
s1 = feval(FunFcn, t, y); s1 = s1(:);
s2 = feval(FunFcn, t + h, y + h*s1); s2=s2(:);
y = y + h*(s1 + s2)/2;
t = tout(k);
yout(k,:) = y.';
end;