MATH 231, FALL 2022-FINAL EXAM
NAME:

1. [12] Solve the initial-value problem. Include the largest interval where the solution is defined.

$$
t^{3} x^{\prime}+3 t^{2} x=t, \quad x=x(t), \quad x(-2)=0 .
$$

2. [13] Sketch the phase line for $y^{\prime}=(y-1)(y-2)(y-3), y=y(t)$, and classify its equilibria (as stable, unstable or semi-stable). Then sketch the y vs. t graph of solutions (include two solution curves in each range defined by the equilibria.) Indicate the vertical asymptotes where they occur.
3. [13] Solve the initial-value problem (in implicit form, if necessary.) $\left(\frac{1}{x}+2 y^{2} x\right) d x+\left(2 y x^{2}-\cos y\right) d y=0, \quad y=y(x), x>0, y(1)=\pi$.
4. [12] Transform the Bernouilli-type equation below to a linear equation (for a new function $y(t)$):

$$
x^{\prime}+t x^{3}+\frac{x}{t}=0, \quad x=x(t), t>0
$$

(There's no need to solve the transformed linear equation.)
5. [12] Find the general solution of the non-homogeneous problem.

$$
y^{\prime \prime}+2 y^{\prime}+2 y=t
$$

6. [12] Solve the initial-value problem and sketch the graph of the solution:

$$
y^{\prime \prime}+3 y^{\prime}+2 y=0, \quad y=y(t), \quad y(0)=-1, y^{\prime}(0)=3
$$

7. [13] Find the first three non-zero terms in a power series expansion about $x=0$ of a the solution to the initial-value problem, and state where the solution converges:

$$
y^{\prime \prime}-x y^{\prime}+2 y=\cos x, \quad y=y(x), \quad y(0)=1, y^{\prime}(0)=1 .
$$

Given: $\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\ldots$
8. [13] Use Laplace transforms to solve the initial value problem, for an arbitrary function $g(t)$ (of exponential order). Express part of the solution as an integral involving $g(t)$.

$$
y^{\prime \prime}-2 y^{\prime}+y=g(t), \quad y=y(t), y(0)=-1, y^{\prime}(0)=1 .
$$

BRIEF TABLE OF LAPLACE TRANSFORMS

$$
\begin{aligned}
& e^{a t}--->\frac{1}{s-a} \quad \sin (b t)--->\frac{b}{s^{2}+b^{2}} \quad \cos (b t)--->\frac{s}{s^{2}+b^{2}} \quad t^{n}--->\frac{n!}{s^{n+1}} \\
& e^{a t} f(t)--->F(s-a) \quad f^{\prime}(t)--->s F(s)-f(0) \quad f^{\prime \prime}(t)--->s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

