Answers to homework problems and comments- Ch.4

Two general principles: (i) D’Alembert’s formula for non-homogeneous problems involves an integration in spacetime, usually time-consuming. ‘Controlled trial-and-error’ (based on uniqueness) is often more efficient; (ii) In problems on the half-line, even-or odd- extensions of the initial data have to be carried out explicitly.

4.2 This is a problem on the half-line with \(u(0, t) \) prescribed, so one could use d’A’s formula with odd extensions. But note that the data is linear or quadratic. Any polynomial in \(x \) and \(t \) of the form:

\[
 u(x, t) = A(x^2 + t^2) + B\, xt
\]

automatically solves the wave equation with \(c = 1 \). Given \(u(x, 0) = x^2 \) and \(u_t(x, 0) = 6x \), \(A = 1 \) and \(B = 6 \) follow; and then (luckily) \(u(0, t) = t^2 \) also holds, so the answer is \(u(x, t) = x^2 + 6xt + t^2 \).

4.6 (a) By uniqueness, if the initial data are even functions of \(x \), so is the solution \(u(x, t) \), and then (assuming \(u \) is \(C^1 \) near the origin for each \(t \)) automatically \(u_x(0, t) = 0 \). Thus it suffices to extend \(f, g \) to \(\mathbb{R} \) as even functions, apply d’Alembert’s formula and restrict the result to the positive half-line (this just means we don’t care what happens for \(x < 0 \)). The conditions \(f'(0) = 0 \) and \(g'(0) = 0 \) (which are forced by the given boundary condition) imply the even extensions are \(C^2 \) (for \(f \)) and \(C^1 \) (for \(g \)), since the original \(f \) and \(g \) are \(C^2 \) (resp. \(C^1 \)) in the closed half-line. If these conditions hold, \(u(x, t) \) is a classical solution (without them, one could still consider the even extensions and run the machine, but the solution would have singularities- propagating along characteristics, as usual).

(b) Note that the even extension of \(f \) is \(f_e(x) = |x|^3 + x^6 \), that of \(g \) is:

\[
 g_e(x) = \sin^3 |x| .
\]

Thus the answer is:

\[
 u(x, t) = \frac{1}{2} (|x + t|^3 + |x - t|^3) + \frac{1}{2} ((x + t)^6 + (x - t)^6) + \frac{1}{2} \int_{x-t}^{x+t} \sin^3 |s| ds.
\]

4.12 Let \(v(x, t) = u(x, t) - \frac{4}{1+t} \). Then \(v \) solves:

\[
 v_{tt} - v_{xx} = \frac{2}{(1+t)^3}, \quad v(0, t) = 0, \quad v(x, 0) = 0, v_t(x, 0) = -1.
\]

We need to consider the odd extensions of the source term and the initial data for \(v \), as functions of \(x \). These are:

\[
 g_o(x) = -\text{sign}(x), \quad F_o(x, t) = 2\text{sign}(x)/(1+t)^3.
\]
Running the machine:

\[v(x, t) = -\frac{1}{2}(|x + t| - |x - t|) + \int_0^t \frac{1}{(1 + \tau)^3} \left[\int_{x-(t-\tau)}^{x+(t-\tau)} \text{sign}(\sigma) d\sigma \right] d\tau. \]

(Note the first term equals \(-t\) if \(x > t\) and equals \(-x\) if \(x < t\).)

To compute the integral in \(\sigma\), we use the fact (already used above) that \(|x|\) is an antiderivative of \(\text{sign}(x)\). Thus:

\[\int_{x-(t-\tau)}^{x+(t-\tau)} \text{sign}(\sigma) d\sigma = |x + t - \tau| - |x - t + \tau|, \]

which is seen to equal: \(2(t - \tau)\) if \(\tau > t - x\) and \(2x\) if \(\tau < t - x\). So we have to consider two cases:

(i) \(x > t\). Then we always have \(\tau > t - x\) (since \(\tau > 0\)), hence:

\[v(x, t) = -t + \int_0^t \frac{2(t - \tau)}{(\tau + 1)^3} d\tau = -t + (t - 1 + \frac{1}{t + 1}) = -\frac{t}{t + 1}. \]

(ii) \(x < t\). Then the integral in \(\tau\) must be split into two intervals, and we find:

\[2x \int_0^{t-x} \frac{d\tau}{(\tau + 1)^3} + \int_{t-x}^t \frac{2(t - \tau)}{(\tau + 1)^3} d\tau = x - \frac{1}{t - x + 1} + \frac{1}{t + 1}. \]

So in this case:

\[v(x, t) = -x + \left(x - \frac{1}{t - x + 1} + \frac{1}{t + 1} \right). \]

We conclude the solution is:

\[u(x, t) = 0 \text{ for } t < x, \quad u(x, t) = 1 - \frac{1}{t - x + 1} = \frac{t - x}{t - x + 1} \text{ for } t > x. \]

It is easy to check this function solves the equation (for \(x > 0\)), and satisfies the initial and boundary conditions (provided one uses the expression for \(x > t\) when checking \(u_t\) at \(t = 0\)).

Remark 1. Note the solution \(u\) is continuous on the line \(x = t\), but \(u_t\) is not (it has a jump of 2 across the line.) This corresponds to the fact that the given boundary condition \(u(0, t) = t/(1 + t)\) (which has derivative 1 at \(t = 0\)) is *incompatible* with the initial condition \(u_t(x, 0) = 0\) (which would give \(u_t(0, 0) = 0\) if \(u_t\) were continuous on the line \(x = t\)).
Also, once one realizes the solution for $x > t$ is a function of t only, given the initial conditions it must be the zero function.

Part (b) is easy: the limit is 0 when $c \leq 1$, 1 when $c > 1$ (along the line $t = cx$, for $x \to \infty$).

Remark 2. Note this is a very interesting solution of the wave equation on the half line: it is driven entirely by the boundary condition (the rest of the data is zero), vanishes identically outside the light cone from the origin and is always non-zero inside that light cone. At any point $x > 0$, the perturbation at the boundary is first felt for $t > x$, and continues to be felt for all future time, asymptotically with the value 1. Note the solution has the form: $u(x, t) = 0$ for $x > t$, $u(x, t) = f(t - x)$ for $t > x$, where $f(t) = u(0, t)$. Can you show this is true in general? (Assume, say, $f(0) = f'(0) = 0$.)

4.14 Note that e^x and $\sin t$ behave very simply under differentiating twice, so we easily see that $v(x, t) = u(x, t) + \frac{1}{4}e^x + \sin t$ solves the problem:

\[v_{tt} - 4v_{xx} = 0, \quad v(x, 0) = \frac{1}{4}e^x, \quad v_t(x, 0) = 1 + \frac{1}{1 + x^2}. \]

Using the formula, we easily find the answer:

\[u(x, t) = \frac{1}{4}e^x \cosh(2t) + t + \frac{1}{4}[\arctan(x + 2t) - \arctan(x - 2t)] - \frac{1}{4}e^x - \sin t. \]

4.16 Answer: $u(x, t) = e^x \sinh t + \frac{x^3}{6}$. (Straightforward application of the non-homogeneous formula.)

4.17(a) One way to solve this without the formula is to write the ‘source term’ (right-hand side) in the form $\cos x \cos t - \sin x \sin t$, and look for solutions of the form:

\[v(x, t) = f(t) \cos x + g(t) \sin x \]

(the linear term x can just be added at the end to get u); this leads to the ODE problems:

\[f'' + f = \cos t, \quad f(0) = f'(0) = 0, \quad g'' + g = -\sin t, g(0) = 0, g'(0) = 1. \]

Elementary ODE methods lead to the solutions:

\[f(t) = \frac{1}{2} t \sin t, \quad g(t) = \frac{1}{2} t \cos t + \frac{1}{2} \sin t. \]

This leads to the answer:

\[u(x, t) = x + \frac{1}{2} \sin(t + x) + \frac{1}{2} \sin t \sin x. \]