Supplementary problems on first-order equations.

Show that each of the following equations is exact and find the general solution, or the solution of the initial-value problem (in implicit form):

1. \(\frac{2t^2y + 1}{y} + \frac{y - t}{t^2}y' = 0, \quad y = y(t); \)
2. \(e^t \sin y + e^{-y} = (te^{-y} - e^t \cos y)y', \quad y = y(t) \quad y(0) = \pi/2 \)

Multiply the differential equation by the given integrating factor to turn it into an exact one, then find a conserved quantity for the equation.

3. \(t^2 + y^2 + t = -ty' \quad y = y(t), \) integrating factor \(t. \)
4. \(y't(2t - y^3) = y(2t + y^3), \quad y = y(t), \) integrating factor \(1/y^3 \)

Solve the following initial-value problems of Bernouilli type, including the interval where the solution is defined:

5. \(y' + y = ty^3, \quad y(t) = t, \quad y(0) = 1/\sqrt{2}. \)
6. \(y' = -\frac{y}{t} - y^2, \quad y = y(t), \quad y(1) = 1. \)

Find the general solution (‘homogeneous type’).

7. \(2ty + (t^2 + y^2)y' = 0, \quad y = y(t) \quad 8. (t + y) = (t - y)y', \quad y = y(t). \)

Solve the initial-value problem, or find the general solution:

9. \(ty' + 2y = 5t^3, \quad y = y(t) \quad 10. (t^2 + 1)y' + ty = t, \quad y = y(t) \)
11. \(y' - \frac{y}{t} = te^t, \quad y(1) = e - 1 \quad 12. t^3y' + 3t^2y = t, \quad y(2) = 0 \)
13. \(y' = \frac{1-t^2}{y^2}, \quad y = y(t) \quad 14. y \ln t = ty', \quad y = y(t) \)
15. \(\sqrt{2ty} = 1, \quad y = y(t) \)
16. \(y' - y^2 + 25 = 0, \quad y(1) = 0 \) (For this problem, in addition, sketch the diagram of all solutions in the \((t, y)\) plane).

17-20 For the equations in the problems listed below, use the existence-uniqueness theorem to answer the following question: for which initial-value problems \(y(t_0) = y_0 \) is a unique solution guaranteed to exist, even without solving the equation explicitly? Problems: 15, 14, 12, 8