Exam 4

1) [50 points] Let $\sigma, \tau \in S_{11}$ be given by
(a) Write the complete factorization of σ into disjoint cycles.

Solution. $\sigma=(15119)(287)(310)(4)(6)$.
(b) Write τ is matrix form.

Solution.

$$
\tau=\left(\begin{array}{ccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
5 & 4 & 11 & 7 & 10 & 8 & 3 & 9 & 6 & 1 & 2
\end{array}\right)
$$

(c) Compute τ^{-1}. [Your answer must be in disjoint cycles form!]

Solution. $\tau^{-1}=(1105)(374211)(698)$.
(d) Compute $\sigma \tau$. [Your answer must be in disjoint cycles form!]

Solution. $\sigma \tau=(1118)(24)(3967105)$.
(e) Compute $\sigma \tau \sigma^{-1}$. [Your answer must be in disjoint cycles form!]

Solution. $\sigma \tau \sigma^{-1}=(5113)(109842)(671)$.
(f) Write τ as a product of transpositions.

Solution. $\tau=(110)(15)(37)(34)(32)(311)(69)(68)$
(g) Compute $\operatorname{sign}(\tau)$.

Solution. $\operatorname{sign}(\tau)=(-1)^{8}=1$ or $(-1)^{11-3}=1$.
(h) Compute $|\tau|$.

Solution. $|\tau|=\operatorname{lcm}(3,5,3)=15$.
(i) Give an element $\alpha \in S_{11}$, with $\alpha \neq 1$, such that $\alpha \cdot \tau=\tau \cdot \alpha$ [i.e., α must commute with τ].

Solution. That $\alpha=\tau$.
(j) Give an element $\beta \in S_{11}$ such that $\beta \cdot \tau \neq \tau \cdot \beta$ [i.e., β does not commute with τ]. Show work! [Hint: You need $\beta \cdot \tau \cdot \beta^{-1} \neq \tau$.]

Solution. Take $\beta=(510)$. Then, $\beta \tau \beta^{-1}=(1105)(311247)(689) \neq \tau$.
2) [15 points] Let G be an Abelian group. Define then:

$$
\operatorname{Tor}(G)=\left\{x \in G: x^{n}=e \text { for some } n \in \mathbb{Z}_{>0}\right\} .
$$

[Here we are using the multiplicative notation and e is the identity element, which we could also denote simply by " 1 ".] Prove that $\operatorname{Tor}(G)$ is a subgroup of G. Make clear where you use the fact the G is Abelian! [If you never do, say so.]
[Careful: Different x 's in $\operatorname{Tor}(G)$ might have different powers that give e, like maybe $x_{1}^{5}=e$, while $x_{2}^{71}=e$. So, there might not be a common power n that works for every $x \in \operatorname{Tor}(G)$.]

Solution. First note that $e \in \operatorname{Tor}(G)$, as $e^{1}=e . \operatorname{So}, \operatorname{Tor}(G) \neq \varnothing$.
Let $x, y \in \operatorname{Tor}(G)$. Then, by definition, there are $m, n \in \mathbb{Z}_{>0}$ such that $x^{m}=y^{n}=e$. In particular $\left(y^{-1}\right)^{n}=y^{-n}=\left(y^{n}\right)^{-1}=e^{-1}=e$. So, we have that $y^{-1} \in \operatorname{Tor}(G)$ and hence $\operatorname{Tor}(G)$ is closed under inverses.

Also, $(x y)^{m n}=x^{m n} y^{m n}=\left(x^{m}\right)^{n}\left(y^{n}\right)^{m}=e^{n} e^{m}=e^{n+m}=e$. We use the fact that G is Abelian in this first equality. But this shows that $\operatorname{Tor}(G)$ is closed under multiplication.

Therefore, $\operatorname{Tor}(G)$ is a subgroup of G.
3) The sets below are not groups. Justify why not.
(a) [10 points] The set O of all odd integers and 0 with addition. $[\mathrm{So}, O=\{0,1,-1,3,-3,5,-5, \ldots\}$.]

Solution. We have $1 \in O$, but $1+1=2 \notin O$, so it is not closed under the operation, and hence not a group.
(b) [10 points] $S=\left\{\left(\begin{array}{ll}2 & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{R}): 2 d-b c \neq 0\right\}$ with the multiplication of matrices.

Solution. Since the identity matrix is not in S [as the (1,1)-entry of the identity is 1 and not 2], it is not a group [as if it were, it would be a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$].
4) [15 points] Show that

$$
S_{3}=\{1,(12),(13),(23),(123),(132)\}
$$

is not cyclic, but every proper subgroup [i.e., subgroup different of S_{3} itself] is cyclic.

Solution. Note that $\left|S_{3}\right|=6$, so if it were cyclic, there would be an element of order 6 . But the elements are 1 , which has order 1 , two cycles, which have order 3 , or 3 -cycles, which have order 3 . So, no element of order 6 , and hence it cannot be cyclic.
[Alternatively, it suffices to observe that S_{3} is not Abelian, as (2 3) (12 3) (2 3) = (132) $=\left(\begin{array}{l}1 \\ 1\end{array} 23\right)$, and hence it cannot be cyclic [as every cyclic group is Abelian].]

Now, if H is a subgroup of G with $H \neq G$, then $|H| \mid 6$ with $|H| \neq 6$. So, $|H|$ is 1,2 , 3 . If 2 or 3, then by Corollary 2.87, H is cyclic. If 1 , then $H=\{1\}=\langle 1\rangle$.

