Exam 4

You must upload the solutions to this exam by 11:59pm on Friday 08/09. Since this is a take home, I want all your solutions to be neat and well written.

You can look at class discussions on Cocalc and our book only (except for the hints to exercises in the back of the book)! You cannot look at our videos, solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!

You can use a computer only to check your answers, as you need to show work in all questions.

1) [50 points] Let $\sigma, \tau \in S_{11}$ be given by
(a) Write the complete factorization of σ into disjoint cycles.
(b) Write τ is matrix form.
(c) Compute τ^{-1}. [Your answer must be in disjoint cycles form!]
(d) Compute $\sigma \tau$. [Your answer must be in disjoint cycles form!]
(e) Compute $\sigma \tau \sigma^{-1}$. [Your answer must be in disjoint cycles form!]
(f) Write τ as a product of transpositions.
(g) Compute $\operatorname{sign}(\tau)$.
(h) Compute $|\tau|$.
(i) Give an element $\alpha \in S_{11}$, with $\alpha \neq 1$, such that $\alpha \cdot \tau=\tau \cdot \alpha$ [i.e., α must commute with τ].
(j) Give an element $\beta \in S_{11}$ such that $\beta \cdot \tau \neq \tau \cdot \beta$ [i.e., β does not commute with τ]. [Hint: You need $\beta \cdot \tau \cdot \beta^{-1} \neq \tau$.]
2) [15 points] Let G be an Abelian group. Define then:

$$
\operatorname{Tor}(G)=\left\{x \in G: x^{n}=e \text { for some } n \in \mathbb{Z}_{>0}\right\} .
$$

[Here we are using the multiplicative notation and e is the identity element, which we could also denote simply by " 1 ".] Prove that $\operatorname{Tor}(G)$ is a subgroup of G. Make clear where you use the fact the G is Abelian! [If you never do, say so.]
[Careful: Different x 's in $\operatorname{Tor}(G)$ might have different powers that give e, like maybe $x_{1}^{5}=e$, while $x_{2}^{71}=e$. So, there might not be a common power n that works for every $x \in \operatorname{Tor}(G)$.]
3) The sets below are not groups. Justify why not.
(a) [10 points] The set O of all odd integers and 0 with addition. [So, $O=\{0,1,-1,3,-3,5,-5, \ldots\}$.]
(b) [10 points] $S=\left\{\left(\begin{array}{ll}2 & b \\ c & d\end{array}\right) \in M_{2}(\mathbb{R}): 2 d-b c \neq 0\right\}$ with the multiplication of matrices.
4) [15 points] Show that

$$
S_{3}=\{1,(12),(13),(23),(123),(132)\}
$$

is not cyclic, but every proper subgroup [i.e., subgroup different of S_{3} itself] is cyclic.

