Exam 3

1) [10 points] Below is the Euclidean Algorithm performed for $f=2 x^{8}+2 x^{6}+x^{5}+2 x^{4}+x^{3}+1$ and $g=2 x^{5}+2 x^{4}+x^{3}+1$ in $\mathbb{F}-3[x]$. Find the missing polynomials $h_{1}(x), h_{2}(x)$, and $h_{3}(x)$ and the GCD of f and g.
[Hint: Be careful with the GCD!]

$$
\begin{aligned}
2 x^{8}+2 x^{6}+x^{5}+2 x^{4}+x^{3}+1 & =\left(2 x^{5}+2 x^{4}+x^{3}+1\right) \cdot\left(x^{3}+2 x^{2}+1\right)+\left(2 x^{3}+x^{2}\right) \\
2 x^{5}+2 x^{4}+x^{3}+1 & =\left(2 x^{3}+x^{2}\right) \cdot h_{1}(x)+h_{2}(x) \\
2 x^{3}+x^{2} & =h_{3}(x) \cdot(x+2)+(2 x+1) \\
2 x^{2}+1 & =(2 x+1) \cdot(x+1)+0
\end{aligned}
$$

Solution. Performing the long division [from the second line] of $2 x^{5}+2 x^{4}+x^{3}+1$ by $2 x^{3}+x^{2}$, we get quotient $h_{1}=x^{2}+2 x+1$ and remainder $h_{2}=2 x^{2}+1$.

Then, on the next line we need to divide the previous divisor by the previous remainder, and so $h_{2}=h_{2}=2 x^{2}+1$.

Now the GCD is the monic version of the last non-zero remainder, i.e., the monic version of $2 x+1$, which is $2 \cdot(2 x+1)=x+2$.
2) [20 points] Consider the factorization into primes/irreducibles of the following polynomials in $\mathbb{Q}[x]$:

$$
\begin{aligned}
& f=x^{2} \cdot(x-2) \cdot\left(x^{2}-x+2\right)^{3} \\
& g=x^{3} \cdot(x-1)^{5} \cdot\left(x^{2}-3 x+1\right)^{2} \cdot\left(x^{2}-x+2\right)
\end{aligned}
$$

Give the factorization into primes/irreducibles of all monic common divisors of f and g.
[Hint: There are 6 monic common divisors, including 1 and the GCD. Also, what is the relation between a common divisor and the GCD?]

Solution. First observe that the factors in the given factorizations are irreducible.
A common divisor is a divisor of the GCD , which is $x^{2} \cdot\left(x^{2}-x-2\right)$ by Proposition 3.86. And, a common divisor So, they are:

$$
1, x, x^{2},\left(x^{2}-x+2\right), x \cdot\left(x^{2}-x+2\right), x^{2} \cdot\left(x^{2}-x+2\right)
$$

3) [20 points] Give an example of a non-zero polynomial f in $\mathbb{F}_{5}[x]$, such that $f([0])=f([1])=$ $f([2])=f([3])=f([4])=[0]$.

Solution. Take $f=x \cdot(x-1) \cdot(x-2) \cdot(x-3) \cdot(x-4)=x^{5}-x$.
4) Examples:
(a) [10 points] Give an example of an domain R that is a subring of $\mathbb{F}_{3}(x, y)$ such that R is not a field.

Solution. $\mathbb{F}_{3}[x], \mathbb{F}_{3}[y]$, and $\mathbb{F}_{3}[x, y]$, for instance, all work.
(b) [10 points] Give an example a ring R that is infinite, non-commutative, and for all $a \in R$, we have that $2 a=0$.

Solution. $M_{2}\left(\mathbb{F}_{2}[x]\right)$ works.
5) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring. Justify each answer!
(a) [5 points] $f=x^{2}+x+1$ in $\mathbb{R}[x]$ (not in $\left.\mathbb{Q}[x]\right)$.

Solution. The roots of f [using quadratic formula] are $(-1 \pm \sqrt{2} i) / 2 \notin \mathbb{R}$. Since the degree is 2 and there are no roots in \mathbb{R}, f is irreducible.
(b) [5 points] $f=6 x^{3}-x^{2}+x+7645274672646$ in $\mathbb{Q}[x]$.

Solution. Reduce modulo 5: $\bar{f}=x^{3}-x^{2}+x+1 \in \mathbb{F}_{5}[x]$. Now $\bar{f}([0])=[1] \neq 0, \bar{f}([1])=[2] \neq 0$, $\bar{f}([2])=[7]=[2] \neq 0, \bar{f}([3])=[2] \neq 0, \bar{f}([4])=[3] \neq 0$. Since $\operatorname{deg}(\bar{f})=3$ and it has no roots, it is irreducible in $\mathbb{F}_{5}[x]$, and thus f is irreducible in $\mathbb{Q}[x]$.
(c) [5 points] $f=7082 x^{5}-10000 x^{4}+32005 x^{3}-37695 x+6000010$ in $\mathbb{Q}[x]$.

Solution. Since $6000010=1200002 \cdot 5$, we have that $25 \nmid 6000010$. Then, Eisenstein's Criterion for $p=5$ tells us that it is irreducible.
(d) [5 points] $f=x^{3}-2019 x^{2}+2019^{2} x-1$ in $\mathbb{Q}[x]$.

Solution. The only possible roots are ± 1 by the rational root test. But $f(1)=2019^{2}-2019>$ 0 and $f(-1)=-2019-2019^{2}-2<0$. So there is no root in \mathbb{Q}. Since the degree is 3 , we have that f is irreducible.
(e) [5 points] $f=x^{7}-\sqrt{2} x^{3}-\pi x^{2}+\pi^{\sqrt{2}}$ in $\mathbb{C}[x]($ not in $\mathbb{Q}[x])$.

Solution. Since the degree is not $1, f$ is irreducible [as it has a root, since \mathbb{C} is algebraically closed].
(f) [5 points] $f=x^{2020}-4$ in $\mathbb{Q}[x]$.

Solution. $f=\left(x^{1010}-2\right)\left(x^{1010}+2\right)$, so reducible.

