Exam 3

You must upload the solutions to this exam by $11: 59 \mathrm{pm}$ on Sunday $08 / 04$. Since this is a take home, I want all your solutions to be neat and well written.

You can look at class discussions on Cocalc and our book only (except for the hints to exercises in the back of the book)! You cannot look at solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!

You can use a computer only to check your answers, as you need to show work in all questions.

1) [10 points] Below is the Euclidean Algorithm performed for $f=2 x^{8}+2 x^{6}+x^{5}+2 x^{4}+x^{3}+1$ and $g=2 x^{5}+2 x^{4}+x^{3}+1$ in $\mathbb{F}_{3}[x]$. Find the missing polynomials $h_{1}(x), h_{2}(x)$, and $h_{3}(x)$ and the GCD of f and g.
[Hint: Be careful with the GCD!]

$$
\begin{aligned}
2 x^{8}+2 x^{6}+x^{5}+2 x^{4}+x^{3}+1 & =\left(2 x^{5}+2 x^{4}+x^{3}+1\right) \cdot\left(x^{3}+2 x^{2}+1\right)+\left(2 x^{3}+x^{2}\right) \\
2 x^{5}+2 x^{4}+x^{3}+1 & =\left(2 x^{3}+x^{2}\right) \cdot h_{1}(x)+h_{2}(x) \\
2 x^{3}+x^{2} & =h_{3}(x) \cdot(x+2)+(2 x+1) \\
2 x^{2}+1 & =(2 x+1) \cdot(x+1)+0
\end{aligned}
$$

2) [20 points] Consider the factorization into primes/irreducibles of the following polynomials in $\mathbb{Q}[x]$:

$$
\begin{aligned}
& f=x^{2} \cdot(x-2) \cdot\left(x^{2}-x+2\right)^{3}, \\
& g=x^{3} \cdot(x-1)^{5} \cdot\left(x^{2}-3 x+1\right)^{2} \cdot\left(x^{2}-x+2\right) .
\end{aligned}
$$

Give the factorization into primes/irreducibles of all monic common divisors of f and g.
[Hint: There are 6 monic common divisors, including 1. Also, what is the relation between a common divisor and the GCD?]
3) [20 points] Give an example of a non-zero polynomial f in $\mathbb{F}_{5}[x]$, such that $f([0])=f([1])=$ $f([2])=f([3])=f([4])=[0]$.
4) Examples:
(a) [10 points] Give an example of a domain R that is a subring of $\mathbb{F}_{3}(x, y)$ but such that R is not a field.
(b) [10 points] Give an example a ring R that is infinite, non-commutative, and for all $a \in R$, we have that $2 a=0$ [which is the same as to say that $a+a=0$].
5) Determine if the polynomials below are irreducible or not in the corresponding polynomial ring. Justify each answer!
(a) [5 points] $f=x^{2}+x+1$ in $\mathbb{R}[x]$ (not in $\mathbb{Q}[x]$).
(b) [5 points] $f=6 x^{3}-x^{2}+x+7645274672646$ in $\mathbb{Q}[x]$.
(c) [5 points] $f=7082 x^{5}-10000 x^{4}+32005 x^{3}-37695 x+6000010$ in $\mathbb{Q}[x]$.
(d) [5 points] $f=x^{3}-2019 x^{2}+2019^{2} x-1$ in $\mathbb{Q}[x]$.
(e) [5 points] $f=x^{7}-\sqrt{2} x^{3}-\pi x^{2}+\pi^{\sqrt{2}}$ in $\mathbb{C}[x]$ (not in $\left.\mathbb{Q}[x]\right)$.
(f) [5 points] $f=x^{2020}-4$ in $\mathbb{Q}[x]$. [Hint: $4=2^{2}$.]

