Exam 2

You must upload the solutions to this exam by $11: 59 \mathrm{pm}$ on Sunday $07 / 28$. Since this is a take home, I want all your solutions to be neat and well written.

You can look at class discussions on Cocalc and our book only (except for the hints to exercises in the back of the book)! You cannot look at our videos, solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!

You can use a computer only to check your answers, as you need to show work in all questions.

1) [15 points] Find all the units of \mathbb{I}_{14} and for each unit, find its inverse.

Solution.

unit	inverse
$[1]$	$[1]$
$[3]$	$[5]$
$[5]$	$[3]$
$[9]$	$[11]$
$[11]$	$[9]$
$[13]$	$[13]$

2) [20 points] For all examples below, check all the boxes that apply [no need to justify]:
(a) $\mathbb{N}=\{0,1,2, \ldots\}$:non-commutative ring,commutative ring,domain,field.
(b) \mathbb{R} :non-commutative ring, \square commutative ring, ∇ domain, ∇ field.
(c) $\mathbb{I}_{5}[x]$:non-commutative ring, \checkmark commutative ring, ∇ domain,field.
(d) $\mathbb{I}_{6}[x]$:non-commutative ring, \square commutative ring,domain,field.
(e) $M_{2}(\mathbb{Q})$ [i.e., 2×2 matrices with entries in $\left.\mathbb{Q}\right]: \square$ non-commutative ring,commutative ring,domain,field.
3) [15 points] Give the prime field of the following fields [no need to justify]:
(a) \mathbb{Q}

Solution. \mathbb{Q} itself.
(b) $\mathbb{R}(x)$

Solution. \mathbb{Q}.
(c) $\mathbb{F}_{p}(x, y)$ [Note that $\mathbb{F}_{p}(x, y)$ is the field of rational functions in two variables. You can see if as the field of fractions of $\mathbb{F}_{p}(x)[y]$, i.e., $\mathbb{F}_{p}(x)(y)$.]

Solution. \mathbb{F}_{p}.
4) Let $R=\mathbb{Z}[\sqrt{3}]=\{a+b \sqrt{3}: a, b \in \mathbb{Z}\}$.
(a) [10 points] Is R a commutative ring? [Justify!]

Solution. First note $R \subseteq \mathbb{R}$, so it suffices to show it is a subring of \mathbb{R}.
Note that $1=1+0 \cdot \sqrt{3} \in F$.
Now, if $a+b \sqrt{3}, c+d \sqrt{3} \in R$ [and so, $a, b, c, d \in \mathbb{Z}$], then $(a+b \sqrt{3})-(c+d \sqrt{3})=(a-c)+$ $(b-d) \sqrt{3} \in R$ as $a-c, b-d \in \mathbb{Z}$ [since \mathbb{Z} is closed under differences].
Also, $(a+b \sqrt{3}) \cdot(c+d \sqrt{3})=(a c+3 b d)+(a d+b c) \sqrt{3} \in R$, since $(a c-b d),(a d+b c) \in \mathbb{Z}$, as \mathbb{Q} is closed under addition and multiplication.
Hence, R is a subring of \mathbb{R}.
(b) [5 points] Is R an integral domain? [Justify!]

Solution. Yes, since \mathbb{R} is a domain and R is a subring of \mathbb{R}, we have that R is a domain.
(c) [5 points] Is R a field? [Justify!]

Solution. We have that 2 has no inverse in R, since if $a+b \sqrt{3}=\frac{1}{2}$, then $2 a+2 b \sqrt{3}=1$, and so $\sqrt{3}=\frac{1-2 a}{2 b} \in \mathbb{Q}[$ since $a, b \in \mathbb{Z}]$, if $b \neq 0$, which is false. So, we must have that $b=0$, and hence $a=\frac{1}{2}$. But this is also impossible since $a \in \mathbb{Z}$.
5) Let F be the field of fractions of the Gaussian integers $\mathbb{Z}[i]=\{a+b i: a, b \in \mathbb{Z}\}$. [Remember that i is the complex number with $i^{2}=-1$ and that $\mathbb{Z}[i]$ is a domain.]
(a) [5 points] Is $\frac{2-3 i}{3+2 i}=\frac{-1}{i}$ in F ? [Show your computations.]

Solution. We have that $(2-3 i) \cdot i=3+2 i \neq-(3+2 i)=(-1) \cdot(3+2 i)$. So they are different.
(b) [10 points] Let $\alpha=\frac{1}{2+i}$ and $\beta=\frac{1+i}{2-i}$. Compute $\alpha+\beta$ and $\alpha \cdot \beta$ [in $\left.F\right]$. Your answers should be in the form $\frac{x}{y}$ with $x, y \in \mathbb{Z}[i]$! [Show work!]

Solution. We have:

$$
\alpha+\beta=\frac{1}{2+i}+\frac{1+i}{2-i}=\frac{(2-i)+(2+i)(1+i)}{(2+i)(2-i)}=\frac{(2-i)+(1+3 i)}{5}=\frac{3+2 i}{5}
$$

and

$$
\alpha \cdot \beta=\frac{1}{2+i} \cdot \frac{1+i}{2-i}=\frac{1 \cdot(1+i)}{(2+i)(2-i)}=\frac{1+i}{5} .
$$

6) [15 points] Prove that every field is an integral domain.

Proof. Suppose that F is a field, $a \neq 0$, and $a x=a y$. [We need to show that $x=y$.] Since $a \neq 0$ and F is a field, we have that a is a unit, and so there is $a^{-1} \in F$ such that $a \cdot a^{-1}=1$. Then, $a^{-1}(a x)=a^{-1}(a y)$, so $\left(a^{-1} a\right) x=\left(a^{-1} a\right) y$. Which implies $1 \cdot x=1 \cdot y$, and thus $x=y$.

