Exam 2

You must upload the solutions to this exam by 11:59pm on Sunday 07/28. Since this is a take home, I want all your solutions to be neat and well written.

You can look at class discussions on Cocalc and *our* book only (*except* for the hints to exercises in the back of the book)! You *cannot* look at our videos, solutions posted by me or *any* other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with *anyone*!

You can use a computer only to check your answers, as you need to show work in all questions.

1) [15 points] Find all the units of \mathbb{I}_{14} and for each unit, find its inverse.

Solution.

unit	inverse
[1]	[1]
[3]	[5]
[5]	[3]
[9]	[11]
[11]	[9]
[13]	[13]

2) [20 points] For all examples below, check all the boxes that apply [no need to justify]:

- (a) $\mathbb{N} = \{0, 1, 2, \ldots\}$: \square non-commutative ring, \square commutative ring, \square domain, \square field.
- (b) \mathbb{R} : \square non-commutative ring, \square commutative ring, \square domain, \square field.
- (c) $\mathbb{I}_5[x]$: \square non-commutative ring, \square commutative ring, \square domain, \square field.
- (d) $\mathbb{I}_6[x]$: \square non-commutative ring, \square commutative ring, \square domain, \square field.
- (e) $M_2(\mathbb{Q})$ [i.e., 2×2 matrices with entries in \mathbb{Q}]: \square non-commutative ring, \square commutative ring, \square domain, \square field.
- 3) [15 points] Give the prime field of the following fields [no need to justify]:

1

(a) Q

Solution. \mathbb{Q} itself.

(b) $\mathbb{R}(x)$

Solution. \mathbb{Q} .

(c) $\mathbb{F}_p(x,y)$ [Note that $\mathbb{F}_p(x,y)$ is the field of rational functions in two variables. You can see if as the field of fractions of $\mathbb{F}_p(x)[y]$, i.e., $\mathbb{F}_p(x)(y)$.]

Solution. \mathbb{F}_p .

- **4)** Let $R = \mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}.$
 - (a) [10 points] Is R a commutative ring? [Justify!]

Solution. First note $R \subseteq \mathbb{R}$, so it suffices to show it is a subring of \mathbb{R} .

Note that $1 = 1 + 0 \cdot \sqrt{3} \in F$.

Now, if $a+b\sqrt{3}, c+d\sqrt{3} \in R$ [and so, $a,b,c,d \in \mathbb{Z}$], then $(a+b\sqrt{3})-(c+d\sqrt{3})=(a-c)+(b-d)\sqrt{3} \in R$ as $a-c,b-d \in \mathbb{Z}$ [since \mathbb{Z} is closed under differences].

Also, $(a+b\sqrt{3})\cdot(c+d\sqrt{3})=(ac+3bd)+(ad+bc)\sqrt{3}\in R$, since $(ac-bd),(ad+bc)\in\mathbb{Z}$, as \mathbb{Q} is closed under addition and multiplication.

Hence, R is a subring of \mathbb{R} .

(b) [5 points] Is R an integral domain? [Justify!]

Solution. Yes, since \mathbb{R} is a domain and R is a subring of \mathbb{R} , we have that R is a domain. \square

(c) [5 points] Is R a field? [Justify!]

Solution. We have that 2 has no inverse in R, since if $a + b\sqrt{3} = \frac{1}{2}$, then $2a + 2b\sqrt{3} = 1$, and so $\sqrt{3} = \frac{1-2a}{2b} \in \mathbb{Q}$ [since $a, b \in \mathbb{Z}$], if $b \neq 0$, which is false. So, we must have that b = 0, and hence $a = \frac{1}{2}$. But this is also impossible since $a \in \mathbb{Z}$.

- 5) Let F be the field of fractions of the Gaussian integers $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$. [Remember that i is the complex number with $i^2 = -1$ and that $\mathbb{Z}[i]$ is a domain.]
 - (a) [5 points] Is $\frac{2-3i}{3+2i} = \frac{-1}{i}$ in F? [Show your computations.]

Solution. We have that $(2-3i) \cdot i = 3+2i \neq -(3+2i) = (-1) \cdot (3+2i)$. So they are different.

(b) [10 points] Let $\alpha = \frac{1}{2+i}$ and $\beta = \frac{1+i}{2-i}$. Compute $\alpha + \beta$ and $\alpha \cdot \beta$ [in F]. Your answers should be in the form $\frac{x}{y}$ with $x, y \in \mathbb{Z}[i]!$ [Show work!]

Solution. We have:

$$\alpha + \beta = \frac{1}{2+i} + \frac{1+i}{2-i} = \frac{(2-i) + (2+i)(1+i)}{(2+i)(2-i)} = \frac{(2-i) + (1+3i)}{5} = \frac{3+2i}{5},$$

and

$$\alpha \cdot \beta = \frac{1}{2+i} \cdot \frac{1+i}{2-i} = \frac{1 \cdot (1+i)}{(2+i)(2-i)} = \frac{1+i}{5}.$$

6) [15 points] Prove that every field is an integral domain.

Proof. Suppose that F is a field, $a \neq 0$, and ax = ay. [We need to show that x = y.] Since $a \neq 0$ and F is a field, we have that a is a unit, and so there is $a^{-1} \in F$ such that $a \cdot a^{-1} = 1$. Then, $a^{-1}(ax) = a^{-1}(ay)$, so $(a^{-1}a)x = (a^{-1}a)y$. Which implies $1 \cdot x = 1 \cdot y$, and thus x = y.