Exam 2

You must upload the solutions to this exam by 11:59pm on Sunday 07/28. Since this is a take home, I want all your solutions to be neat and well written.

You can look at class discussions on Cocalc and *our* book only (*except* for the hints to exercises in the back of the book)! You *cannot* look at our videos, solutions posted by me or *any* other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with *anyone*!

You can use a computer only to check your answers, as you need to show work in all questions.

1) [1	15 points] Find all the units of \mathbb{I}_{14} and for each unit, find its inverse.
2) [2	20 points] For all examples below, check <i>all</i> the boxes that apply [no need to justify]:
(a)	$\mathbb{N} = \{0,1,2,\ldots\} \colon \ \Box \ \text{non-commutative ring,} \ \Box \ \text{commutative ring,} \ \Box \ \text{domain,} \ \Box \ \text{field.}$
(b)	$\mathbb{R}\colon \square$ non-commutative ring, \square commutative ring, \square domain, \square field.
(c)	$\mathbb{I}_5[x]$: \square non-commutative ring, \square commutative ring, \square domain, \square field.
(d)	$\mathbb{I}_{6}[x]$: \square non-commutative ring, \square commutative ring, \square domain, \square field.
(e)	$M_2(\mathbb{Q})$ [i.e., 2×2 matrices with entries in \mathbb{Q}]: \square non-commutative ring, \square commutative ring, \square domain, \square field.
, .	15 points] Give the prime field of the following fields [no need to justify]:
(a)	
` ,	$\mathbb{R}(x)$
(c)	$\mathbb{F}_p(x,y)$ [Note that $\mathbb{F}_p(x,y)$ is the field of rational functions in two variables. You can see if as the field of fractions of $\mathbb{F}_p(x)[y]$, i.e., $\mathbb{F}_p(x)(y)$.]
4) Le	et $R = \mathbb{Z}[\sqrt{3}] = \{a + b\sqrt{3} : a, b \in \mathbb{Z}\}.$
(a)	[10 points] Is R a commutative ring? [Justify!]
(b)	[5 points] Is R an integral domain? [Justify!]

(c) [5 points] Is R a field? [Justify!]

- 5) Let F be the field of fractions of the Gaussian integers $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$. [Remember that i is the complex number with $i^2 = -1$ and that $\mathbb{Z}[i]$ is a domain.]
 - (a) [5 points] Is $\frac{2-3i}{3+2i} = \frac{-1}{i}$ in F? [Show your computations.]
 - (b) [10 points] Let $\alpha = \frac{1}{2+i}$ and $\beta = \frac{1+i}{2-i}$. Compute $\alpha + \beta$ and $\alpha \cdot \beta$ [in F]. [Show work!]