EXAM 1

1) [15 points] Use the *Extended Euclidean Algorithm* to write the GCD of 235 and 185 as a linear combination of themselves. *Show the computations explicitly!* [Hint: You should get 5 for the GCD!]

Solution. We have:

$$235 = 185 \cdot 1 + 50$$

$$185 = 50 \cdot 3 + 35$$

$$50 = 35 \cdot 1 + 15$$

$$35 = 15 \cdot 2 + 5$$

$$15 = 5 \cdot 3 + 0,$$

So, the GCD is 5. Now:

$$5 = 35 + (-2) \cdot 15$$

= 35 + (-2) \cdot (50 - 35)
= (-2) \cdot 50 + 3 \cdot 35
= (-2) \cdot 50 + 3 \cdot (185 - 3 \cdot 50)
= 3 \cdot 185 + (-11) \cdot 50
= 3 \cdot 185 + (-11) \cdot (235 - 185)
= (-11) \cdot 235 + 14 \cdot 185.

-	_	_	
н		1	
н		1	
н.		_	

2) [15 points] If a and b are positive integers such that ab = 3321 and gcd(a, b) = 3, then what is lcm(a, b)?

Solution. lcm(a, b) = ab/gcd(a, b) = 3321/3 = 1107.

3) [15 points] Let a and b be positive integers with (a, b) = d. Prove that (a/d, b/d) = 1.

Proof. By Theorem 1.35 [which I called *Bezout's Theorem*], we have that there are $r, s \in \mathbb{Z}$ such that

$$ra + bs = d.$$

Dividing this equation by d, we have:

$$r\left(\frac{a}{d}\right) + s\left(\frac{b}{d}\right) = 1.$$

By Problem 1.56 [done in class], this implies that (a/d, b/d) = 1.

4) [20 points] Find the remainder of $10001 \cdot 674378^{584} - 3728382$ when divided by 5. Show your computations explicitly!

Solution. First, remember that if $a = d_k d_{k-1} \cdots d_0$ [d_i 's the digits of a], then $a \equiv d_0 \pmod{5}$. We first deal with the power: 674378 $\equiv 3 \pmod{5}$. Now we find the exponent in base 5:

$$584 = 5 \cdot 116 + 4$$

$$116 = 5 \cdot 23 + 1$$

$$23 = 5 \cdot 4 + 3$$

$$4 = 5 \cdot 0 + 4$$

So, $584 = (4314)_5$, and $674378^{584} \equiv 3^{4+3+1+4} = 3^{12} = 3^{2+2\cdot 5} \equiv 3^{2+2} = 81 \equiv 1 \pmod{5}$. So:

$$10001 \cdot 674378^{584} - 3728382 \equiv 10001 \cdot 2 - 3728382$$
$$\equiv 1 \cdot 1 - 2$$
$$\equiv -1 \equiv 4 \pmod{5}.$$

Hence, the remainder is 4.

5) [20 points] Give the set of all integer solutions of the system

$$\begin{array}{ll} x \equiv 4 & \pmod{15}, \\ 3x \equiv 11 & \pmod{14}. \end{array}$$

Solution. We do it by substitution. The first equation gives that x = 15n + 4 for some $n \in \mathbb{Z}$. Substituting in the second equation, we have

$$3 \cdot (4+15n) \equiv 11 \pmod{14} \quad \Rightarrow \quad 45n \equiv -1 \pmod{14} \quad \Rightarrow \quad 3n \equiv -1 \pmod{14}$$

Multiplying by 5, we get $n \equiv -5 \equiv 9 \pmod{14}$, so n = 9 + 14k for some $k \in \mathbb{Z}$. Then, $x = 15 \cdot (9 + 14k) + 4 = 139 + 210k$, for $k \in \mathbb{Z}$.

6) [15 points] Prove that 1234567 is not a perfect square.

Proof. We look modulo 4: $1234567 \equiv 67 \equiv 3 \pmod{4}$. But the squares modulo 4 are 0 and 1 only [as $0^2 \equiv 0 \pmod{4}$, $1^2 \equiv 1 \pmod{4}$, $2^2 \equiv 0 \pmod{4}$, and $3^2 \equiv 1 \pmod{4}$], so 1234567 is not a perfect square.

_	-
_	_