Exam 4

You must upload the solutions to this exam (as a PDF file) on Canvas by 11:59pm on Friday 07/06. Since this is a take home, I want all your solutions to be neat and well written.

You can look at our book only! You cannot look at our videos, solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!

1) Let $f: A \rightarrow C$ and $g: B \rightarrow C$, with $A \cap B=\varnothing$. Prove that $(f \cup g): A \cup B \rightarrow C$ [i.e., that $f \cup g$ is a function from $A \cup B$ to $C]$.
[Note: This was a HW problem, but you cannot look at the solution for it, not even your own. You need to redo it.]
2) Let $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove that if f is onto and g is not one-to-one, then $g \circ f$ is not one-to-one.
[Note: This was a HW problem, but you cannot look at the solution for it, not even your own. You need to redo it.]
3) We say that a function $f: A \rightarrow A$ [note it's from A to A itself!] has a fixed point if there is $a \in A$ such that $f(a)=a$. Let $g: A \rightarrow B$ an one-to-one and onto function. Prove that if $f: A \rightarrow A$ has a fixed point, then so does $g \circ f \circ g^{-1}$. [Note that $g \circ f \circ g^{-1}: B \rightarrow B$, so the fixed point is some $b \in B$.]
4) Prove by induction that for all $n \in\{0,1,2,3,4, \ldots\}$ we have that $3 \mid\left(25^{n}-1\right)$ [i.e., 3 divides $25^{n}-1$]. [There are other ways to prove this statement, but you must prove it by induction!]
5) Let

$$
\begin{aligned}
& a_{1}=1 \\
& a_{n}=\frac{a_{n-1}}{a_{n-1}+1} \text { for } n \geq 2 .
\end{aligned}
$$

Prove that $a_{n}=\frac{1}{n}$ for all $n \in\{1,2,3, \ldots\}$.
6) Let

$$
\begin{aligned}
& a_{1}=4, \\
& a_{2}=5, \\
& a_{n}=(n-2) \cdot a_{n-2}+(n-3) \cdot a_{n-1} \text { for } n \geq 3 .
\end{aligned}
$$

Prove that for all $n \geq 5$ we have that $a_{n}>2^{n}$.

