Exam 3

You must upload the solutions to this exam (as a PDF file) on Canvas by 11:59pm on Sunday $07 / 01$. Since this is a take home, I want all your solutions to be neat and well written.

You can look at our book only! You cannot look at our videos, solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!

1) Let A_{i} and B_{i} be indexed families with $I \neq 0$. Prove that

$$
\left(\bigcap_{i \in I} A_{i}\right) \times\left(\bigcap_{i \in I} B_{i}\right) \subseteq \bigcap_{i \in I}\left(A_{i} \times B_{i}\right) .
$$

Proof. Let $(x, y) \in\left(\bigcap_{i \in I} A_{i}\right) \times\left(\bigcap_{i \in I} B_{i}\right)$. Then, $x \in \bigcap_{i \in I} A_{i}$ and $y \in \bigcap_{i \in I} B_{i}$. So for all $i \in I$ we have that $x \in A_{i}$ and $y \in B_{i}$. Hence, for all $i \in I$ we have that $(x, y) \in A_{i} \cap B_{i}$. But this means that $(x, y) \in \bigcap_{i \in I}\left(A_{i} \times B_{i}\right)$.
2) Let $A=\{1,2,3,4,5\}, B=\{a, b, c, d e\}$, and R and S be relations on $A \times B$ and $B \times A$, respectively, given by:

$$
\begin{aligned}
R & =\{(1, a),(1, d),(2, c),(2, e),(3, b),(3, d),(3, e),(5, a)\}, \\
S & =\{(a, 2),(b, 1),(b, 4),(d, 4),(d, 5),(e, 1),(e, 4)\} .
\end{aligned}
$$

(a) Give $\operatorname{Dom}(R)$.

Solution. $\operatorname{Dom}(R)=\{1,2,3,5\}$.
(b) Give $\operatorname{Ran}(S)$.

Solution. $\operatorname{Ran}(S)=\{1,2,4,5\}$.
(c) Give R^{-1}.

Solution.

$$
\begin{aligned}
R & =\{(a, 1),(d, 1),(c, 2),(e, 2),(b, 3),(d, 3),(e, 3),(a, 5)\} \\
& =\{(a, 1),(a, 5),(b, 3),(c, 2),(d, 1),(d, 3),(e, 2),(e, 3)\}
\end{aligned}
$$

(d) Give $S \circ R$.

Solution.

$$
S \circ R=\{(1,2),(1,4),(1,5),(2,1),(2,4),(3,1),(3,4),(3,5),(5,2)\} .
$$

3) Let R be a non-empty relation on the non-empty set A.
(a) Prove that if R is reflexive, then $R \subseteq R \circ R$.

Proof. Let $(x, y) \in R$. Since R is reflexive, we have that $(y, y) \in R$. Since $(x, y),(y, y) \in R$, we have that $(x, y) \in R \circ R$.
(b) Prove that if R is transitive, then $R \circ R \subseteq R$.

Proof. Let $(x, z) \in R \circ R$. Then, there is $y \in A$ such that $(x, y) \in R$ and $(y, z) \in R$. Since R is transitive, we must have also that $(x, z) \in R$.
4) Suppose that R is partial order on $A, B \subseteq A$, and b be the largest element of B. Prove that b is also a maximal element of B and that it is the only maximal element of B.

Proof. [Maximal] Let $x \in B$ such that $b R x$. Since $x \in B$ and b is the largest element of b, we have that $x R b$. Since R is a partial order [and hence antisymmetric], we have that $x=b$. Hence, b is maximal.
[Uniqueness] Now assume that $c \in B$ is another maximal element. [Need $c=b$.] Since b is the largest element of B, we have that $c R b$. But, since $b \in B$ and c is maximal, we have that $b=c$.
5) Let $A=\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y \neq 0\}$ [i.e., $A=\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$], and define for $(a, b),(c, d) \in A$ the relation R by $(a, b) R(c, d)$ if $a d=b c$.
(a) Prove that R is an equivalence relation. [Note: transitivity is a bit tricky, and requires some algebraic manipulations.]

Proof. [Reflexive] We have that $(a, b) R(a, b)$, since $a b=b a$.
[Symmetric] Suppose that $(a, b) R(c, d)$, i.e., $a d=b c$. But then, $d a=c b$, and so $(c, d) R(a, b)$.
[Transitive] Suppose that $(a, b) R(c, d)$ and $(c, d) R(e, f)$. Then, $a d=b c$ and $c f=d e$. Multiplying the first equation by f and the second by b, we get $a d f=b c f$ and $b c f=b d e$. So, $a d f=b d e$. Since $d \neq 0$, we have $a f=b e$, and so $(a, b) R(e, f)$.
(b) For any $b \in \mathbb{Z} \backslash\{0\}$, let $S_{b}=\{(k, k b) \mid k \in \mathbb{Z} \backslash\{0\}\}$. Prove that $[(1, b)]_{R}=S_{b}$.

Proof. [\subseteq] Let $(x, y) \in[(1, b)]_{R}$. Then, $(x, y) R(1, b)$ and hence $x b=y$. Note that since $y \neq 0$, we have that $x \neq 0$. Also, $(x, y)=(x, x b)$, and since $x \neq 0$, we have that $(x, y) \in S_{b}$.
$[\supseteq]$ Let $(x, y) \in S_{b}$. So, $(x, y)=(k, k b)$ for some $k \in \mathbb{Z} \backslash\{0\}$. Then, $k b=1 \cdot k b$ and hence $(k, k b) R(1, b)$, and so $(k, k b)=(x, y) \in[(1, b)]_{R}$.
6) Let \mathcal{F}_{1} and \mathcal{F}_{2} be partitions of A_{1} and A_{2} respectively, with $A_{1} \cap A_{2}=\varnothing$. Prove that $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is a partition of $A_{1} \cup A_{2}$.

Proof. $\left[\mathcal{F}_{1} \cup \mathcal{F}_{2} \subseteq \mathscr{P}\left(A_{1} \cup A_{2}\right)\right]$ Let $X \in \mathcal{F}_{1} \cup \mathcal{F}_{2}$. Then, either $X \in \mathcal{F}_{1}$ or $X \in \mathcal{F}_{2}$. If the former, then $X \subseteq A_{1} \subseteq A_{1} \cup A_{2}$, as $\mathcal{F}_{1} \subseteq \mathscr{P}\left(A_{1}\right)$. If the latter, then $X \subseteq A_{2} \subseteq A_{1} \cup A_{2}$, as $\mathcal{F}_{1} \subseteq \mathscr{P}\left(A_{1}\right)$. In either case, we have that $X \in \mathscr{P}\left(A_{1} \cup A_{2}\right)$.
[No empty set.] If $\varnothing \in \mathcal{F}_{1} \cup \mathcal{F}_{2}$, then either $\varnothing \in \mathcal{F}_{1}$ or $\varnothing \in \mathcal{F}_{2}$. But either is impossible, as \mathcal{F}_{1} and \mathcal{F}_{2} are partitions. Thus $\varnothing \notin \mathcal{F}_{1} \cup \mathcal{F}_{2}$.
[Disjoint.] Suppose $X, Y \in \mathcal{F}_{1} \cup \mathcal{F}_{2}$ with $X \cap Y \neq \varnothing$. If both X and Y are either in \mathcal{F}_{1} or in \mathcal{F}_{2}, then $X=Y$, since \mathcal{F}_{1} and \mathcal{F}_{2} are partitions. So, assume that $X \in \mathcal{F}_{1}$ and $Y \in \mathcal{F}_{2}$. [The case where $X \in \mathcal{F}_{2}$ and $Y \in \mathcal{F}_{1}$ is analogous.] But then $X \subseteq A_{1}$ and $Y \subseteq A_{2}$. But if $X \cap Y \neq \varnothing$, there is $x \in X \cap Y$, which means $x \in X \subseteq A_{1}$ and $x \in Y \subseteq A_{2}$. But this is a contradiction, as $A_{1} \cap A_{2}=\varnothing$. So, $X \cap Y=\varnothing$.
[Covers $A_{1} \cup A_{2}$]. Let $x \in A_{1} \cup A_{2}$. Then, either $x \in A_{1}$ or $x \in A_{2}$. If the former, since \mathcal{F}_{1} is a partition of A_{1}, there is $X \in \mathcal{F}_{1} \subseteq \mathcal{F}_{1} \cup \mathcal{F}_{2}$ such that $x \in X$. If the latter, since \mathcal{F}_{2} is a partition of A_{2}, there is $X \in \mathcal{F}_{2} \subseteq \mathcal{F}_{1} \cup \mathcal{F}_{2}$ such that $x \in X$. So, in either case there is $X \in \mathcal{F}_{1} \cup \mathcal{F}_{2}$ such that $x \in X$.

