EXAM 3

You must upload the solutions to this exam (as a PDF file) on Canvas by 11:59pm on Sunday 07/01. Since this is a take home, I want all your solutions to be neat and well written.

You can look at *our* book only! You *cannot* look at our videos, solutions posted by me or *any* other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with *anyone*!

1) Let A_i and B_i be indexed families with $I \neq 0$. Prove that

$$\left(\bigcap_{i\in I} A_i\right) \times \left(\bigcap_{i\in I} B_i\right) \subseteq \bigcap_{i\in I} (A_i \times B_i).$$

Proof. Let $(x, y) \in (\bigcap_{i \in I} A_i) \times (\bigcap_{i \in I} B_i)$. Then, $x \in \bigcap_{i \in I} A_i$ and $y \in \bigcap_{i \in I} B_i$. So for all $i \in I$ we have that $x \in A_i$ and $y \in B_i$. Hence, for all $i \in I$ we have that $(x, y) \in A_i \cap B_i$. But this means that $(x, y) \in \bigcap_{i \in I} (A_i \times B_i)$.

2) Let $A = \{1, 2, 3, 4, 5\}$, $B = \{a, b, c, de\}$, and R and S be relations on $A \times B$ and $B \times A$, respectively, given by:

$$R = \{(1, a), (1, d), (2, c), (2, e), (3, b), (3, d), (3, e), (5, a)\},\$$

$$S = \{(a, 2), (b, 1), (b, 4), (d, 4), (d, 5), (e, 1), (e, 4)\}.$$

(a) Give Dom(R).

Solution.
$$Dom(R) = \{1, 2, 3, 5\}.$$

(b) Give $\operatorname{Ran}(S)$.

Solution. $\operatorname{Ran}(S) = \{1, 2, 4, 5\}.$

(c) Give R^{-1} .

Solution.

$$R = \{(a, 1), (d, 1), (c, 2), (e, 2), (b, 3), (d, 3), (e, 3), (a, 5)\}$$

= $\{(a, 1), (a, 5), (b, 3), (c, 2), (d, 1), (d, 3), (e, 2), (e, 3)\}$

(d) Give $S \circ R$.

1

Solution.

$$S \circ R = \{(1,2), (1,4), (1,5), (2,1), (2,4), (3,1), (3,4), (3,5), (5,2)\}.$$

3) Let R be a non-empty relation on the non-empty set A.

(a) Prove that if R is reflexive, then $R \subseteq R \circ R$.

Proof. Let $(x, y) \in R$. Since R is reflexive, we have that $(y, y) \in R$. Since $(x, y), (y, y) \in R$, we have that $(x, y) \in R \circ R$.

(b) Prove that if R is transitive, then $R \circ R \subseteq R$.

Proof. Let $(x, z) \in R \circ R$. Then, there is $y \in A$ such that $(x, y) \in R$ and $(y, z) \in R$. Since R is transitive, we must have also that $(x, z) \in R$.

4) Suppose that R is partial order on A, $B \subseteq A$, and b be the largest element of B. Prove that b is also a maximal element of B and that it is the only maximal element of B.

Proof. [Maximal] Let $x \in B$ such that bRx. Since $x \in B$ and b is the largest element of b, we have that xRb. Since R is a partial order [and hence antisymmetric], we have that x = b. Hence, b is maximal.

[Uniqueness] Now assume that $c \in B$ is another maximal element. [Need c = b.] Since b is the largest element of B, we have that cRb. But, since $b \in B$ and c is maximal, we have that b = c. \Box

5) Let $A = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y \neq 0\}$ [i.e., $A = \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$], and define for $(a, b), (c, d) \in A$ the relation R by (a, b)R(c, d) if ad = bc.

(a) Prove that *R* is an equivalence relation. [Note: transitivity is a bit tricky, and requires some algebraic manipulations.]

Proof. [Reflexive] We have that (a, b)R(a, b), since ab = ba. [Symmetric] Suppose that (a, b)R(c, d), i.e., ad = bc. But then, da = cb, and so (c, d)R(a, b). [Transitive] Suppose that (a, b)R(c, d) and (c, d)R(e, f). Then, ad = bc and cf = de. Multiplying the first equation by f and the second by b, we get adf = bcf and bcf = bde. So, adf = bde. Since $d \neq 0$, we have af = be, and so (a, b)R(e, f).

(b) For any $b \in \mathbb{Z} \setminus \{0\}$, let $S_b = \{(k, kb) \mid k \in \mathbb{Z} \setminus \{0\}\}$. Prove that $[(1, b)]_R = S_b$.

Proof. $[\subseteq]$ Let $(x, y) \in [(1, b)]_R$. Then, (x, y)R(1, b) and hence xb = y. Note that since $y \neq 0$, we have that $x \neq 0$. Also, (x, y) = (x, xb), and since $x \neq 0$, we have that $(x, y) \in S_b$.

 $[\supseteq]$ Let $(x, y) \in S_b$. So, (x, y) = (k, kb) for some $k \in \mathbb{Z} \setminus \{0\}$. Then, $kb = 1 \cdot kb$ and hence (k, kb)R(1, b), and so $(k, kb) = (x, y) \in [(1, b)]_R$.

6) Let \mathcal{F}_1 and \mathcal{F}_2 be partitions of A_1 and A_2 respectively, with $A_1 \cap A_2 = \emptyset$. Prove that $\mathcal{F}_1 \cup \mathcal{F}_2$ is a partition of $A_1 \cup A_2$.

Proof. $[\mathcal{F}_1 \cup \mathcal{F}_2 \subseteq \mathscr{P}(A_1 \cup A_2)]$ Let $X \in \mathcal{F}_1 \cup \mathcal{F}_2$. Then, either $X \in \mathcal{F}_1$ or $X \in \mathcal{F}_2$. If the former, then $X \subseteq A_1 \subseteq A_1 \cup A_2$, as $\mathcal{F}_1 \subseteq \mathscr{P}(A_1)$. If the latter, then $X \subseteq A_2 \subseteq A_1 \cup A_2$, as $\mathcal{F}_1 \subseteq \mathscr{P}(A_1)$. In either case, we have that $X \in \mathscr{P}(A_1 \cup A_2)$.

[No empty set.] If $\emptyset \in \mathcal{F}_1 \cup \mathcal{F}_2$, then either $\emptyset \in \mathcal{F}_1$ or $\emptyset \in \mathcal{F}_2$. But either is impossible, as \mathcal{F}_1 and \mathcal{F}_2 are partitions. Thus $\emptyset \notin \mathcal{F}_1 \cup \mathcal{F}_2$.

[Disjoint.] Suppose $X, Y \in \mathcal{F}_1 \cup \mathcal{F}_2$ with $X \cap Y \neq \emptyset$. If both X and Y are either in \mathcal{F}_1 or in \mathcal{F}_2 , then X = Y, since \mathcal{F}_1 and \mathcal{F}_2 are partitions. So, assume that $X \in \mathcal{F}_1$ and $Y \in \mathcal{F}_2$. [The case where $X \in \mathcal{F}_2$ and $Y \in \mathcal{F}_1$ is analogous.] But then $X \subseteq A_1$ and $Y \subseteq A_2$. But if $X \cap Y \neq \emptyset$, there is $x \in X \cap Y$, which means $x \in X \subseteq A_1$ and $x \in Y \subseteq A_2$. But this is a contradiction, as $A_1 \cap A_2 = \emptyset$. So, $X \cap Y = \emptyset$.

[Covers $A_1 \cup A_2$]. Let $x \in A_1 \cup A_2$. Then, either $x \in A_1$ or $x \in A_2$. If the former, since \mathcal{F}_1 is a partition of A_1 , there is $X \in \mathcal{F}_1 \subseteq \mathcal{F}_1 \cup \mathcal{F}_2$ such that $x \in X$. If the latter, since \mathcal{F}_2 is a partition of A_2 , there is $X \in \mathcal{F}_2 \subseteq \mathcal{F}_1 \cup \mathcal{F}_2$ such that $x \in X$. So, in either case there is $X \in \mathcal{F}_1 \cup \mathcal{F}_2$ such that $x \in X$. \Box