Exam 3

You must upload the solutions to this exam (as a PDF file) on Canvas by 11:59pm on Sunday $07 / 01$. Since this is a take home, I want all your solutions to be neat and well written.

You can look at our book only! You cannot look at our videos, solutions posted by me or any other references (including the Internet) without my previous approval. Also, of course, you cannot discuss this with anyone!

1) Let A_{i} and B_{i} be indexed families with $I \neq \varnothing$. Prove that

$$
\left(\bigcap_{i \in I} A_{i}\right) \times\left(\bigcap_{i \in I} B_{i}\right) \subseteq \bigcap_{i \in I}\left(A_{i} \times B_{i}\right) .
$$

2) Let $A=\{1,2,3,4,5\}, B=\{a, b, c, d, e\}$, and R and S be relations on $A \times B$ and $B \times A$, respectively, given by:

$$
\begin{aligned}
R & =\{(1, a),(1, d),(2, c),(2, e),(3, b),(3, d),(3, e),(5, a)\}, \\
S & =\{(a, 2),(b, 1),(b, 4),(d, 4),(d, 5),(e, 1),(e, 4)\} .
\end{aligned}
$$

(a) Give $\operatorname{Dom}(R)$.
(b) Give $\operatorname{Ran}(S)$.
(c) Give R^{-1}.
(d) Give $S \circ R$.
3) Let R be a non-empty relation on the non-empty set A.
(a) Prove that if R is reflexive, then $R \subseteq R \circ R$.
(b) Prove that if R is transitive, then $R \circ R \subseteq R$.
4) Suppose that R is partial order on $A, B \subseteq A$, and let b be the largest element of B. Prove that b is also a maximal element of B and that it is the only maximal element of B.
5) Let $A=\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid y \neq 0\}$ [i.e., $A=\mathbb{Z} \times(\mathbb{Z} \backslash\{0\})$], and define for $(a, b),(c, d) \in A$ the relation R by $(a, b) R(c, d)$ if $a d=b c$.
(a) Prove that R is an equivalence relation. [Note: transitivity is a bit tricky, and requires some algebraic manipulations.]
(b) For any $b \in \mathbb{Z} \backslash\{0\}$, let $S_{b}=\{(k, k b) \mid k \in \mathbb{Z} \backslash\{0\}\}$. Prove that $[(1, b)]_{R}=S_{b}$.
6) Let \mathcal{F}_{1} and \mathcal{F}_{2} be partitions of A_{1} and A_{2} respectively, with $A_{1} \cap A_{2}=\varnothing\left[\right.$ and $\left.A_{1}, A_{2} \neq \varnothing\right]$. Prove that $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is a partition of $A_{1} \cup A_{2}$.

